Automotive industries are very much interested in implementing warm forming technology for fabrication of light weight auto-body panels using aluminum alloys without localized thinning or splitting. A nonheat treatable and low formable AA5754-H22 aluminum alloy sheet was selected in the present work, and a laboratory scale warm deep drawing test set-up and process sequences were designed to improve material flow through independent heating of punch and dies. Significant enhancement in cup depth was observed when the temperature of punch and dies were set to 30 °C and 200 °C, respectively. Thermo-mechanical finite-element (FE) model of the nonisothermal deep drawing test was developed successfully to study the improvement in material flow incorporating Barlat-89 yield theory using temperature dependent anisotropy coefficients and Cowper–Symonds hardening model. It was found that a nonisothermal temperature gradient of approximately 93 °C was established within the blank from the center to flange at the start of deformation, and subsequent evolution of temperature gradient helped in improving material flow into the die cavity. The effect of temperature gradient on forming behavior in terms of cup height, ear profile, and thinning development across flange, cup wall, and blank center were predicted and validated with experimental results.

References

1.
Wilson
,
D. V.
,
1988
, “
Aluminium Versus Steel in the Family Car—the Formability Factor
,”
J. Mech. Work. Technol.
,
16
(
3
), pp.
257
277
.
2.
Li
,
D.
, and
Ghosh
,
A. K.
,
2004
, “
Biaxial Warm Forming Behavior of Aluminum Sheet Alloys
,”
J. Mater. Process. Technol.
,
145
(
3
), pp.
281
293
.
3.
Ayres
,
R. A.
, and
Wenner
,
M. L.
,
1979
, “
Strain and Strain-Rate Hardening Effects in Punch Stretching of 5182-0 Aluminum at Elevated Temperatures
,”
Metall. Trans. A
,
10
(
1
), pp.
41
46
.
4.
Panicker
,
S. S.
, and
Panda
,
S. K.
,
2015
, “
Formability Analysis of AA5754 Alloy at Warm Condition: Appraisal of Strain Rate Sensitive Index
,”
Mater. Today Proc.
,
2
(
4–5
), pp.
1996
2004
.
5.
Li
,
D.
, and
Ghosh
,
A.
,
2003
, “
Tensile Deformation Behavior of Aluminum Alloys at Warm Forming Temperatures
,”
Mater. Sci. Eng. A
,
352
(
1–2
), pp.
279
286
.
6.
Bolt
,
P. J.
,
Lamboo
,
N. A. P. M.
, and
Rozier
,
P. J. C. M.
,
2001
, “
Feasibility of Warm Drawing of Aluminium Products
,”
J. Mater. Process. Technol.
,
115
(
1
), pp.
118
121
.
7.
Panicker
,
S. S.
,
Singh
,
H. G.
,
Panda
,
S. K.
, and
Dashwood
,
R.
,
2015
, “
Characterization of Tensile Properties, Limiting Strains, and Deep Drawing Behavior of AA5754-H22 Sheet at Elevated Temperature
,”
J. Mater. Eng. Perform.
,
24
(
11
), pp.
4267
4282
.
8.
Kaya
,
S.
,
Spampinato
,
G.
, and
Altan
,
T.
,
2008
, “
An Experimental Study on Nonisothermal Deep Drawing Process Using Aluminum and Magnesium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
130
(
6
), p.
061001
.
9.
Naka
,
T.
, and
Yoshida
,
F.
,
1999
, “
Deep Drawability of Type 5083 Aluminium-Magnesium Alloy Sheet Under Various Conditions of Temperature and Forming Speed
,”
J. Mater. Process. Technol.
,
89–90
, pp.
19
23
.
10.
Palumbo
,
G.
, and
Tricarico
,
L.
,
2007
, “
Numerical and Experimental Investigations on the Warm Deep Drawing Process of Circular Aluminum Alloy Specimens
,”
J. Mater. Process. Technol.
,
184
(
1–3
), pp.
115
123
.
11.
Kim
,
H. S.
,
Koş
,
M.
, and
Ni
,
J.
,
2006
, “
Determination of Proper Temperature Distribution for Warm Forming of Aluminum Sheet Materials
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
622
633
.
12.
Yoon
,
J. W.
,
Barlat
,
F.
,
Dick
,
R. E.
,
Chung
,
K.
, and
Kang
,
T. J.
,
2004
, “
Plane Stress Yield Function for Aluminum Alloy Sheets—Part II: FE Formulation and Its Implementation
,”
Int. J. Plast.
,
20
(
3
), pp.
495
522
.
13.
Naka
,
T.
,
Nakayama
,
Y.
,
Uemori
,
T.
,
Hino
,
R.
, and
Yoshida
,
F.
,
2003
, “
Effects of Temperature on Yield Locus for 5083 Aluminum Alloy Sheet
,”
J. Mater. Process. Technol.
,
140
, pp.
494
499
.
14.
Kurukuri
,
S.
,
van den Boogaard
,
A. H.
,
Miroux
,
A.
, and
Holmedal
,
B.
,
2009
, “
Warm Forming Simulation of Al-Mg Sheet
,”
J. Mater. Process. Technol.
,
209
, pp.
5636
5645
.
15.
Abedrabbo
,
N.
,
Pourboghrat
,
F.
, and
Carsley
,
J.
,
2007
, “
Forming of AA5182-O and AA5754-O at Elevated Temperatures Using Coupled Thermo-Mechanical Finite Element Models
,”
Int. J. Plast.
,
23
(
5
), pp.
841
875
.
16.
Barlat
,
F.
, and
Lian
,
J.
,
1989
, “
Plastic Behavior and Stretchability of Sheet Metals. Part I: A Yield Function for Orthotropic Sheets Under Plane Stress Conditions
,”
Int. J. Plast.
,
5
(
1
), pp.
51
66
.
17.
Banabic
,
D.
,
2010
,
Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation
,
Springer
,
Berlin
, pp.
1
312
.
18.
Bandyopadhyay
,
K.
,
Panda
,
S. K.
,
Saha
,
P.
, and
Padmanabham
,
G.
,
2015
, “
Limiting Drawing Ratio and Deep Drawing Behavior of Dual Phase Steel Tailor Welded Blanks: FE Simulation and Experimental Validation
,”
J. Mater. Process. Technol.
,
217
, pp.
48
64
.
19.
Livermore Software Technology Corporation
,
2007
,
LS-DYNA Keyword User's Manual, Version 971
, Vol.
I
,
Livermore Software Technology Corporation
,
Livermore, CA
.
20.
Xiaoda
,
L.
,
Xiangkui
,
Z.
,
Ping
,
H.
, and
Xianghui
,
Z.
,
2016
, “
Thermo-Mechanical Coupled Stamping Simulation about the Forming Process of High-Strength Steel Sheet
,”
Int. J. Control Autom.
,
9
(
1
), pp.
93
102
.
21.
Karbasian
,
H.
, and
Tekkaya
,
A. E.
,
2010
, “
A Review on Hot Stamping
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2103
2118
.
You do not currently have access to this content.