Virtual manufacturing systems carry out the simulation of manufacturing processes in digital environment in order to increase accuracy as well as productivity in part production. There are different error sources in machine tools, such as tool deflection, geometrical deviations of moving axis, and thermal distortions of machine tool structures. The errors due to tool deflection are caused by cutting forces and have direct effects on dimensional accuracy, surface roughness of the parts, and efficient life of the cutting tool, holder, and spindle. This paper presents an application of virtual machining systems in order to improve the accuracy and productivity of part manufacturing by monitoring and minimizing the tool deflection error. The tool deflection error along machining paths is monitored to present a useful methodology in controlling the produced parts with regard to desired tolerances. Suitable tool and spindle can also be selected due to the ability of error monitoring. In order to minimize the error, optimization technique based on genetic algorithms is used to determine optimized machining parameters. Free-form profile of virtual and real machined parts with tool deflection error is compared in order to validate reliability as well as accuracy of the software.

References

1.
López de Lacalle
,
L. N.
,
Lamikiz
,
A.
,
Sánchez
,
J. A.
, and
Salgado
,
M. A.
,
2007
, “
Toolpath Selection Based on the Minimum Deflection Cutting Forces in the Programming of Complex Surfaces Milling
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
388
400
.
2.
Rao
,
V. S.
, and
Rao
,
P. V. M.
,
2006
, “
Tool Deflection Compensation in Peripheral Milling of Curved Geometries
,”
Int. J. Mach. Tools Manuf.
,
46
(
15
), pp.
2036
2043
.
3.
Ryu
,
S. H.
,
2012
, “
An Analytical Expression for End Milling Forces and Tool Deflection Using Fourier Series
,”
Int. J. Adv. Manuf. Technol.
,
59
(
1–4
), pp.
37
46
.
4.
Dow
,
T. A.
,
Miller
,
E. L.
, and
Garrard
,
K.
,
2004
, “
Tool Force and Deflection Compensation for Small Milling Tools
,”
Precis. Eng.
,
28
(
1
), pp.
31
45
.
5.
Smaoui
,
M.
,
Bouaziz
,
Z.
,
Zghal
,
A.
,
Dessein
,
G.
, and
Baili
,
M.
,
2011
, “
Simulation of the Deflected Cutting Tool Trajectory in Complex Surface Milling
,”
Int. J. Adv. Manuf. Technol.
,
56
(
5–8
), pp.
463
474
.
6.
Ong
,
T. S.
, and
Hinds
,
B. K.
,
2003
, “
The Application of Tool Deflection Knowledge in Process Planning to Meet Geometric Tolerances
,”
Int. J. Mach. Tools Manuf.
,
43
(
7
), pp.
731
737
.
7.
Zeroudi
,
N.
, and
Fontaine
,
M.
,
2015
, “
Prediction of Tool Deflection and Tool Path Compensation in Ball-End Milling
,”
J. Intell. Manuf.
,
26
(
3
), pp.
425
445
.
8.
Kivanc
,
E. B.
, and
Budak
,
E.
,
2004
, “
Structural Modeling of End Mills for Form Error and Stability Analysis
,”
Int. J. Mach. Tools Manuf.
,
44
(
11
), pp.
1151
1161
.
9.
Nojedeh
,
M. V.
,
Habibi
,
M.
, and
Arezoo
,
B.
,
2011
, “
Tool Path Accuracy Enhancement Through Geometrical Error Compensation
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
471
482
.
10.
Eskandari
,
S.
,
Arezoo
,
B.
, and
Abdullah
,
A.
,
2013
, “
Positional, Geometrical, and Thermal Errors Compensation by Tool Path Modification Using Three Methods of Regression, Neural Networks, and Fuzzy Logic
,”
Int. J. Adv. Manuf. Technol.
,
65
(
9–12
), pp.
1635
1649
.
11.
Habibi
,
M.
,
Arezoo
,
B.
, and
Nojedeh
,
M. V.
,
2011
, “
Tool Deflection and Geometrical Error Compensation by Tool Path Modification
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
439
449
.
12.
Soori
,
M.
,
Arezoo
,
B.
, and
Habibi
,
M.
,
2013
, “
Dimensional and Geometrical Errors of Three-Axis CNC Milling Machines in a Virtual Machining System
,”
Comput. Aided Des.
,
45
(
11
), pp.
1306
1313
.
13.
Soori
,
M.
,
Arezoo
,
B.
, and
Habibi
,
M.
,
2014
, “
Virtual Machining Considering Dimensional, Geometrical and Tool Deflection Errors in Three-Axis CNC Milling Machines
,”
J. Manuf. Syst.
,
33
(
4
), pp.
498
507
.
14.
Palanisamy
,
P.
,
Rajendran
,
I.
, and
Shanmugasundaram
,
S.
,
2007
, “
Optimization of Machining Parameters Using Genetic Algorithm and Experimental Validation for End-Milling Operations
,”
Int. J. Adv. Manuf. Technol.
,
32
(
7–8
), pp.
644
655
.
15.
Cus
,
F.
,
Milfelner
,
M.
, and
Balic
,
J.
,
2006
, “
An Intelligent System for Monitoring and Optimization of Ball-End Milling Process
,”
J. Mater. Process Technol.
,
175
(
1
), pp.
90
97
.
16.
Milfelner
,
M.
,
Cus
,
F.
, and
Balic
,
J.
,
2005
, “
An Overview of Data Acquisition System for Cutting Force Measuring and Optimization in Milling
,”
J. Mater. Process Technol.
,
164
, pp.
1281
1288
.
17.
Kumar
,
A. S.
,
Adam Khan
,
M.
,
Thiraviam
,
R.
, and
Sornakumar
,
T.
,
2006
, “
Machining Parameters Optimization for Alumina Based Ceramic Cutting Tools Using Genetic Algorithm
,”
Mach. Sci. Technol.
,
10
(
4
), pp.
471
489
.
18.
D'Addona
,
D. M.
, and
Teti
,
R.
,
2013
, “
Genetic Algorithm-Based Optimization of Cutting Parameters in Turning Processes
,”
Procedia CIRP
,
7
, pp.
323
328
.
19.
Jameel
,
A.
,
Minhat
,
M.
, and
Nizam
,
Md.
,
2013
, “
Using Genetic Algorithm to Optimize Machining Parameters in Turning Operation: A Review
,”
Int. J. Sci. Res. Publ.
,
3
, pp.
1
6
.
20.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2008
, “
Virtual Cutting and Optimization of Three-Axis Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
48
(
10
), pp.
1063
1071
.
21.
Engin
,
S.
, and
Altintas
,
Y.
,
2001
, “
Mechanics and Dynamics of General Milling Cutters: Part I: Helical End Mills
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2195
2212
.
22.
Erdim
,
H.
,
Lazoglu
,
I.
, and
Ozturk
,
B.
,
2006
, “
Feed Rate Scheduling Strategies for Free Form Surfaces
,”
Int. J. Mach. Tools Manuf.
,
46
(
7
), pp.
747
757
.
23.
Salami
,
R.
,
Sadeghi
,
M. H.
, and
Motakef
,
B.
,
2007
, “
Feed Rate Optimization for 3-Axis Ball End Milling of Sculptured Surfaces
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
760
767
.
24.
Guzel
,
B. U.
, and
Lazoglu
,
I.
,
2004
, “
Increasing Productivity in Sculptured Surface Machining Via Off-Line Piecewise Variable Feed Rate Scheduling Based on the Force System Model
,”
Int. J. Mach. Tools Manuf.
,
44
(
1
), pp.
21
28
.
25.
Fu
,
H. J.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
,
1984
, “
A Mechanistic Model for the Prediction of the Force System in Face Milling Operation
,”
ASME J. Eng. Ind.
,
106
(
1
), pp.
81
88
.
26.
Yucesan
,
G.
, and
Altıntaş
,
Y.
,
1996
, “
Prediction of Ball End Milling Forces
,”
ASME J. Eng. Ind.
,
118
(
1
), pp.
95
103
.
27.
Budak
,
E.
, and
Tekeli
,
A.
,
2005
, “
Maximizing Chatter Free Material Removal Rate in Milling Through Optimal Selection of Axial and Radial Depth of Cut Pairs
,”
Ann. CIRP
,
54
(
1
), pp.
353
356
.
28.
Altintas
,
Y.
, and
Merdol
,
S. D.
,
2007
, “
Virtual High Performance Milling
,”
Ann. CIRP
,
56
(
1
), pp.
81
84
.
29.
Rad
,
M. T.
, and
Bidhendi
,
I. M.
,
1997
, “
On the Optimization of Machining Parameters for Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
37
(
1
), pp.
1
16
.
30.
“Vericut Software,” Last accessed Aug. 26, 2015, http://www.cgtech.com/products/about-vericut/
You do not currently have access to this content.