This work investigates the effects of turning process parameters on recrystallization behavior in Al alloy 7075. To realize this purpose, samples were machined under different cutting speeds and material feed rates at two extreme levels. Microscopy imaging reveals that activation of dynamic recrystallization or grain growth depends on the combination of applied cutting parameters. Increasing the cutting speed intensifies recrystallization, while the feed rate governs the grain growth. Adjusting the cutting parameters enables one to obtain a desired average grain size below the machined surface, up to a ∼180 μm depth. The average grain size of the initial material was 31.6 μm. The imposed processing parameters successfully yielded average grain sizes in the range from 19 to 44 μm. Additionally, a computational framework work consisting of finite-element analysis (FEA) coupled with kinetic-based modeling of recrystallization was developed, which is capable of following the trend of change in the average grain size and acceptably predicts the evolved average grain size.

References

1.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
, New York.
2.
Lin
,
J.
,
Balint
,
D.
, and
Pietrzyk
,
M.
,
2012
,
Microstructure Evolution in Metal Forming Processes
,
Elsevier
, Oxford, UK.
3.
Bontcheva
,
N.
, and
Petzov
,
G.
,
2003
, “
Microstructure Evolution During Metal Forming Processes
,”
Comput. Mater. Sci.
,
28
(
3
), pp.
563
573
.
4.
Tabei
,
A.
,
Li
,
D.
,
Lavender
,
C.
, and
Garmestani
,
H.
,
2015
, “
Investigation of Precipitate Refinement in Mg Alloys by an Analytical Composite Failure Model
,”
Mech. Mater.
,
89
, pp.
59
71
.
5.
Tabei
,
S.
,
Sheidaei
,
A.
,
Baniassadi
,
M.
,
Pourboghrat
,
F.
, and
Garmestani
,
H.
,
2013
, “
Microstructure Reconstruction and Homogenization of Porous Ni-YSZ Composites for Temperature Dependent Properties
,”
J. Power Sources
,
235
(
1
), pp.
74
80
.
6.
Tabei
,
A.
,
Li
,
D. S.
,
Lavender
,
C. A.
, and
Garmestani
,
H.
,
2014
, “
Effects of Morphology and Geometry of Inclusions on Two-Point Correlation Statistics in Two Phase Composites
,”
Int. J. Theor. Appl. Multiscale Mech.
,
3
(
1
), pp.
1
17
.
7.
Tabei
,
A.
,
Fergani
,
O.
,
Garmestani
,
H.
, and
Liang
,
S. Y.
,
2014
, “
Analysis of Micro-Texture and Grain Size Distributions in Machined Aluminum Alloy 7075
,”
Adv. Mater. Res.
,
1052
(
1
), pp.
489
494
.
8.
Basu
,
S.
, and
Shankar
,
M. R.
,
2015
, “
Crystallographic Textures Resulting From Severe Shear Deformation in Machining
,”
Metall. Mater. Trans. A
,
46
(
2
), pp.
801
812
.
9.
Arısoy
,
Y. M.
, and
Özel
,
T.
,
2014
, “
Prediction of Machining Induced Microstructure in Ti-6Al-4V Alloy Using 3-D FE-Based Simulations: Effects of Tool Micro-Geometry, Coating and Cutting Conditions
,”
J. Mater. Process. Technol.
,
220
, pp.
1
16
.
10.
Rotella
,
G.
,
Dillon
,
O. W.
, Jr.
,
Umbrello
,
D.
,
Settineri
,
L.
, and
Jawahir
,
I. S.
,
2013
, “
Finite Element Modeling of Microstructural Changes in Turning of AA7075-T651 Alloy
,”
J. Manuf. Processes
,
15
(
1
), pp.
87
95
.
11.
Swaminathan
,
S.
,
Shankar
,
M. R.
,
Lee
,
S.
,
Hwang
,
J.
,
King
,
A. H.
,
Kezar
,
R. F.
,
Rao
,
B. C.
,
Brown
,
T. L.
,
Chandrasekar
,
S.
, and
Compton
,
W. D.
,
2005
, “
Large Strain Deformation and Ultra-Fine Grained Materials by Machining
,”
Mater. Sci. Eng. A
,
410
, pp.
358
363
.
12.
Bissey-Breton
,
S.
,
Gravier
,
J.
, and
Vignal
,
V.
,
2011
, “
Impact of Superfinish Turning on Surface Integrity of Pure Copper
,”
Proc. Eng.
,
19
, pp.
28
33
.
13.
Rollett
,
A.
,
Humphreys
,
F.
,
Rohrer
,
G. S.
, and
Hatherly
,
M.
,
2004
,
Recrystallization and Related Annealing Phenomena
,
Elsevier
, Oxford, UK.
14.
Shankar
,
M. R.
,
Chandrasekar
,
S.
,
King
,
A. H.
, and
Compton
,
W. D.
,
2005
, “
Microstructure and Stability of Nanocrystalline Aluminum 6061 Created by Large Strain Machining
,”
Acta Mater.
,
53
(
18
), pp.
4781
4793
.
15.
Courbon
,
C.
,
Mabrouki
,
T.
,
Rech
,
J.
,
Mazuyer
,
D.
,
Perrard
,
F.
, and
D'Eramo
,
E.
,
2013
, “
Towards a Physical FE Modelling of a Dry Cutting Operation: Influence of Dynamic Recrystallization When Machining AISI 1045
,”
Proc. CIRP
,
8
, pp.
515
520
.
16.
M'Saoubi
,
R.
,
Larsson
,
T.
,
Outeiro
,
J.
,
Guo
,
Y.
,
Suslov
,
S.
,
Saldana
,
C.
, and
Chandrasekar
,
S.
,
2012
, “
Surface Integrity Analysis of Machined Inconel 718 Over Multiple Length Scales
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
99
102
.
17.
Ghosh
,
S.
, and
Kain
,
V.
,
2010
, “
Microstructural Changes in AISI 304L Stainless Steel Due to Surface Machining: Effect on Its Susceptibility to Chloride Stress Corrosion Cracking
,”
J. Nucl. Mater.
,
403
(
1
), pp.
62
67
.
18.
Ni
,
H.
,
Elmadagli
,
M.
, and
Alpas
,
A.
,
2004
, “
Mechanical Properties and Microstructures of 1100 Aluminum Subjected to Dry Machining
,”
Mater. Sci. Eng. A
,
385
(
1
), pp.
267
278
.
19.
Ding
,
H.
, and
Shin
,
Y. C.
,
2011
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Commercially Pure Titanium
,”
ASME
Paper No. MSEC2011-50220.
20.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2011
, “
Modeling of Grain Refinement in Aluminum and Copper Subjected to Cutting
,”
Comput. Mater. Sci.
,
50
(
10
), pp.
3016
3025
.
21.
Rotella
,
G.
, and
Umbrello
,
D.
,
2014
, “
Numerical Simulation of Surface Modification in Dry and Cryogenic Machining of AA7075 Alloy
,”
Proc. CIRP
,
13
, pp.
327
332
.
22.
Jafarian
,
F.
,
Ciaran
,
M. I.
,
Umbrello
,
D.
,
Arrazola
,
P.
,
Filice
,
L.
, and
Amirabadi
,
H.
,
2014
, “
Finite Element Simulation of Machining Inconel 718 Alloy Including Microstructure Changes
,”
Int. J. Mech. Sci.
,
88
, pp.
110
121
.
23.
Totten
,
G. E.
, and
MacKenzie
,
D. S.
,
2003
,
Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes
, Vol.
1
,
CRC Press
, Boca Raton, FL.
24.
Le
,
K.
, and
Kochmann
,
D.
,
2009
, “
A Simple Model for Dynamic Recrystallization During Severe Plastic Deformation
,”
Arch. Appl. Mech.
,
79
(
6–7
), pp.
579
586
.
25.
Bacca
,
M.
,
Hayhurst
,
D. R.
, and
McMeeking
,
R. M.
,
2015
, “
Continuous Dynamic Recrystallization During Severe Plastic Deformation
,”
Mech. Mater.
,
90
, pp.
148
156
.
26.
Liu
,
R.
,
Salahshoor
,
M.
,
Melkote
,
S.
, and
Marusich
,
T.
,
2015
, “
A Unified Material Model Including Dislocation Drag and Its Application to Simulation of Orthogonal Cutting of OFHC Copper
,”
J. Mater. Process. Technol.
,
216
, pp.
328
338
.
27.
Brar
,
N.
,
Joshi
,
V.
, and
Harris
,
B.
,
2009
, “
Constitutive Model Constants for Al7075-T651 and Al7075-T6
,”
AIP Conf. Proc.
,
1195
, p. 945.
28.
Kolmogorov
,
A. N.
,
1937
, “
On the Statistical Theory of the Crystallization of Metals
,”
Bull. Acad. Sci. USSR, Math. Ser.
,
1
, pp.
355
359
.
29.
Johnson
,
W. A.
, and
Mehl
,
R. F.
,
1939
, “
Reaction Kinetics in Processes of Nucleation and Growth
,”
Trans. Metall. Soc. AIME
,
135
(
8
), pp.
396
415
.
30.
Avrami
,
M.
,
1939
, “
Kinetics of Phase Change—I: General Theory
,”
J. Chem. Phys.
,
7
(
12
), pp.
1103
1112
.
31.
Quan
,
G.-Z.
,
Mao
,
Y.-P.
,
Li
,
G.-S.
,
Lv
,
W.-Q.
,
Wang
,
Y.
, and
Zhou
,
J.
,
2012
, “
A Characterization for the Dynamic Recrystallization Kinetics of As-Extruded 7075 Aluminum Alloy Based on True Stress–Strain Curves
,”
Comput. Mater. Sci.
,
55
, pp.
65
72
.
32.
Jonas
,
J. J.
,
Quelennec
,
X.
,
Jiang
,
L.
, and
Martin
,
É.
,
2009
, “
The Avrami Kinetics of Dynamic Recrystallization
,”
Acta Mater.
,
57
(
9
), pp.
2748
2756
.
33.
Roberts
,
W.
,
Boden
,
H.
, and
Ahlblom
,
B.
,
1979
, “
Dynamic Recrystallization Kinetics
,”
Metal Sci.
,
13
(
3–4
), pp.
195
205
.
34.
Deschamps
,
A.
, and
Brechet
,
Y.
,
1998
, “
Influence of Predeformation and Ageing of an Al–Zn–Mg Alloy—II: Modeling of Precipitation Kinetics and Yield Stress
,”
Acta Mater.
,
47
(
1
), pp.
293
305
.
35.
Hines
,
J.
, and
Vecchio
,
K.
,
1997
, “
Recrystallization Kinetics Within Adiabatic Shear Bands
,”
Acta Mater.
,
45
(
2
), pp.
635
649
.
36.
Medina
,
S. F.
, and
Hernandez
,
C. A.
,
1996
, “
Modelling of the Dynamic Recrystallization of Austenite in Low Alloy and Microalloyed Steels
,”
Acta Mater.
,
44
(
1
), pp.
165
171
.
37.
Souza
,
R.
,
Silva
,
E.
,
Jorge
,
A.
, Jr.
,
Cabrera
,
J.
, and
Balancin
,
O.
,
2013
, “
Dynamic Recovery and Dynamic Recrystallization Competition on a Nb- and N-Bearing Austenitic Stainless Steel Biomaterial: Influence of Strain Rate and Temperature
,”
Mater. Sci. Eng. A
,
582
, pp.
96
107
.
38.
Kugler
,
G.
, and
Turk
,
R.
,
2004
, “
Modeling the Dynamic Recrystallization Under Multi-Stage Hot Deformation
,”
Acta Mater.
,
52
(
15
), pp.
4659
4668
.
39.
Yeom
,
J. T.
,
Lee
,
C. S.
,
Kim
,
J. H.
, and
Park
,
N.-K.
,
2007
, “
Finite-Element Analysis of Microstructure Evolution in the Cogging of an Alloy 718 Ingot
,”
Mater. Sci. Eng. A
,
449
, pp.
722
726
.
40.
Yang
,
X.
,
Miura
,
H.
, and
Sakai
,
T.
,
2002
, “
Continuous Dynamic Recrystallization in a Superplastic 7075 Aluminum Alloy
,”
Mater. Trans.
,
43
(
10
), pp.
2400
2407
.
41.
Gholinia
,
A.
,
Humphreys
,
F.
, and
Prangnell
,
P.
,
2002
, “
Production of Ultra-Fine Grain Microstructures in Al–Mg Alloys by Coventional Rolling
,”
Acta Mater.
,
50
(
18
), pp.
4461
4476
.
42.
Bolouri
,
A.
,
Shahmiri
,
M.
, and
Kang
,
C. G.
,
2012
, “
Coarsening of Equiaxed Microstructure in the Semisolid State of Aluminum 7075 Alloy Through SIMA Processing
,”
J. Mater. Sci.
,
47
(
8
), pp.
3544
3553
.
43.
Asgharzadeh
,
H.
, and
McQueen
,
H.
,
2015
, “
Grain Growth and Stabilisation of Nanostructured Aluminium at High Temperatures: Review
,”
Mater. Sci. Technol.
31
(
9
),
1016
1034
.
44.
Sakai
,
T.
,
Miura
,
H.
,
Goloborodko
,
A.
, and
Sitdikov
,
O.
,
2009
, “
Continuous Dynamic Recrystallization During the Transient Severe Deformation of Aluminum Alloy 7475
,”
Acta Mater.
,
57
(
1
), pp.
153
162
.
You do not currently have access to this content.