Widespread application of lightweight magnesium and titanium alloys sheet is limited mainly because of their poor-workability issues, both in primary processing by rolling and secondary sheet forming. This study describes a hybrid cutting–extrusion process, large-strain extrusion machining (LSEM), for producing sheet and foil. By utilizing a constraining edge placed across from the cutting tool edge, the usual cutting process is transformed into continuous shear-deformation process, wherein the thickness of the sheet at its exit from the deformation zone is directly controlled. The confinement of the deformation field in LSEM enables near-adiabatic heating in the deformation zone. Consequently, external workpiece heating, intrinsic to sheet manufacturing by multistage rolling in alloys of poor workability (e.g., hexagonal close packed (hcp) alloys and cast materials), is minimized. Furthermore, the deformation parameters, such as strain, strain rate, and strain path, can be controlled to refine the microstructure and induce shear-type crystallographic textures that enable enhanced sheet mechanical properties (strength and formability). This application of LSEM is demonstrated using magnesium alloy AZ31B as a model system. Since LSEM is a single-stage process for sheet production, it is potentially attractive in terms of production economics and energy. Implications for process scale-up and control of plastic flow localization are briefly discussed.

References

1.
Mathaudhu
,
S. N.
,
Luo
,
A. A.
,
Neelameggham
,
N. R.
,
Nyberg
,
E. A.
, and
Sillekens
,
W. H.
, eds.,
2014
,
Essential Readings in Magnesium Technology
,
Wiley
,
Hoboken, NJ
.10.1002/9781118859803
2.
Hosford
,
W. F.
, and
Caddell
,
R. M.
,
1993
,
Metal Forming: Mechanics and Metallurgy
, 2nd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
3.
Davis
,
J. R.
, and
Semiatin
,
S. L.
,
1988
,
Metals Handbook
, 9th ed., Vol.
14
,
American Society for Metals
,
Materials Park, OH
.
4.
Froes
,
F. H.
,
Gungor
,
M. N.
, and
Imam
,
M. A.
,
2007
, “
Cost-Affordable Titanium: The Component Fabrication Perspective
,”
J. Met.
,
59
(
6
), pp.
28
31
.10.1007/s11837-007-0074-8
5.
Barnett
,
M. R.
,
Nave
,
M. D.
, and
Bettles
,
C. J.
,
2004
, “
Deformation Microstructures and Textures of Some Cold Rolled Mg Alloys
,”
Mater. Sci. Eng., A
,
386
(
1–2
), pp.
205
211
.10.1016/S0921-5093(04)00942-6
6.
Moscoso
,
W.
,
Shankar
,
M. R.
,
Mann
,
J. B.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2007
, “
Bulk Nanostructured Materials by Large Strain Extrusion Machining
,”
J. Mater. Res.
,
22
(
1
), pp.
201
205
.10.1557/jmr.2007.0021
7.
Efe
,
M.
,
Moscoso
,
W.
,
Trumble
,
K. P.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2012
, “
Mechanics of Large Strain Extrusion Machining and Application to Deformation Processing of Magnesium Alloys
,”
Acta Mater.
,
60
(
5
), pp.
2031
2042
.10.1016/j.actamat.2012.01.018
8.
Guo
,
Y.
,
Efe
,
M.
,
Moscoso
,
W.
,
Sagapuram
,
D.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2012
, “
Deformation Field in Large-Strain Extrusion Machining and Implications for Deformation Processing
,”
Scr. Mater.
,
66
(
5
), pp.
235
238
.10.1016/j.scriptamat.2011.10.045
9.
Sagapuram
,
D.
,
Efe
,
M.
,
Moscoso
,
W.
,
Chandrasekar
,
S.
, and
Trumble
,
K. P.
,
2013
, “
Controlling Texture in Magnesium Alloy Sheet by Shear-Based Deformation Processing
,”
Acta Mater.
,
61
(
18
), pp.
6843
6856
.10.1016/j.actamat.2013.07.063
10.
Weiner
,
J. H.
,
1955
, “
Shear-Plane Temperature Distribution in Orthogonal Cutting
,”
Trans. ASME
,
77
(
8
), pp.
1331
1341
.
11.
Narayan
,
V.
,
Krishnamurthy
,
K.
,
Hwang
,
J.
,
Kompella
,
S.
,
Chandrasekar
,
S.
,
Farris
,
T. N.
, and
Madhavan
,
V.
,
2003
, “
Measurement of Temperature Field at the Tool-Chip Interface
,”
NSF Workshop on Research Needs in Thermal Aspects of Material Removal Processes
,
R.
Komanduri
, and
O. K.
Stillwater
, eds., pp.
63
69
.
12.
Menon
,
T. T.
, and
Madhavan
,
V.
,
2014
, “
Infrared Thermography of the Chip-Tool Interface Through Transparent Cutting Tools
,”
North American Manufacturing Research Conference
,
Detroit
,
MI
, Vol.
42
.
13.
Lutterotti
,
L.
,
Bortolotti
,
M.
,
Ischia
,
M.
,
Lonardelli
,
I.
, and
Wenk
,
H. R.
,
2007
, “
Rietveld Texture Analysis From Diffraction Images
,”
Z. Kristallogr. Suppl.
,
26
, pp.
125
130
.10.1524/zksu.2007.2007.suppl_26.125
14.
Bachmann
,
F.
,
Hielscher
,
R.
, and
Schaeben
,
H.
,
2010
, “
Texture Analysis With MTEX–Free and Open Source Software Toolbox
,”
Solid State Phenom.
,
160
, pp.
63
68
.10.4028/www.scientific.net/SSP.160.63
15.
Guo
,
Y.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2015
, “
In Situ Analysis of Flow Dynamics and Deformation Fields in Cutting and Sliding of Metals
,”
Proc. R. Soc. A
,
471
(
2178
), p.
20150194
.10.1098/rspa.2015.0194
16.
Sagapuram
,
D.
,
Yeung
,
H.
,
Guo
,
Y.
,
Mahato
,
A.
,
M’Saoubi
,
R.
,
Compton
,
W. D.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2015
, “
On Control of Flow Instabilities in Cutting of Metals
,”
CIRP Ann.-Manuf. Technol.
,
64
(
1
), pp.
49
52
.10.1016/j.cirp.2015.04.059
17.
Salcedo
,
D.
,
Luis
,
C. J.
,
León
,
J.
,
Puertas
,
I.
,
Fuertes
,
J. P.
, and
Luri
,
R.
,
2014
, “
Manufacturing of Nanostructured Blades for a Francis Turbine by Isothermal Forging of AA6063
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011009
.10.1115/1.4025396
18.
Doege
,
E.
, and
Dröder
,
K.
,
2001
, “
Sheet Metal Forming of Magnesium Wrought Alloys–Formability and Process Technology
,”
J. Mater. Process. Technol.
,
115
(
1
), pp.
14
19
.10.1016/S0924-0136(01)00760-9
19.
Agnew
,
S. R.
,
Horton
,
J. A.
,
Lillo
,
T. M.
, and
Brown
,
D. W.
,
2004
, “
Enhanced Ductility in Strongly Textured Magnesium Produced by Equal Channel Angular Pressing
,”
Scr. Mater.
,
50
(
3
), pp.
377
381
.10.1016/j.scriptamat.2003.10.006
20.
Yuan
,
W.
, and
Mishra
,
R. S.
,
2012
, “
Grain Size and Texture Effects on Deformation Behavior of AZ31 Magnesium Alloy
,”
Mater. Sci. Eng., A
,
558
, pp.
716
724
.10.1016/j.msea.2012.08.080
21.
Beausir
,
B.
,
Biswas
,
S.
,
Kim
,
D. L.
,
Tóth
,
L. S.
, and
Suwas
,
S.
,
2009
, “
Analysis of Microstructure and Texture Evolution in Pure Magnesium During Symmetric and Asymmetric Rolling
,”
Acta Mater.
,
57
(
17
), pp.
5061
5077
.10.1016/j.actamat.2009.07.008
22.
Beausir
,
B.
,
Tóth
,
L. S.
, and
Neale
,
K. W.
,
2007
, “
Ideal Orientations and Persistence Characteristics of Hexagonal Close Packed Crystals in Simple Shear
,”
Acta Mater.
,
55
(
8
), pp.
2695
2705
.10.1016/j.actamat.2006.12.021
23.
Barnett
,
M. R.
,
2007
, “
Twinning and the Ductility of Magnesium Alloys: Part II. ‘Contraction’ Twins
,”
Mater. Sci. Eng., A
,
464
(
1
), pp.
8
16
.10.1016/j.msea.2007.02.109
24.
Welsch
,
G.
,
Boyer
,
R.
, and
Collings
,
E. W.
, eds.,
1993
,
Materials Properties Handbook: Titanium Alloys
,
ASM International
,
Materials Park, OH
.
25.
Komanduri
,
R.
, and
Brown
,
R. H.
,
1981
, “
On the Mechanics of Chip Segmentation in Machining
,”
ASME J. Manuf. Sci. Eng.
,
103
(
1
), pp.
33
51
.10.1115/1.3184458
26.
Gane
,
N.
,
1979
, “
Chip Fracture During Machining of the Brass
,”
4th Tewksbury Symposium
,
Melbourne
,
Australia
, pp.
13.1
13.22
.
27.
Daneryd
,
A.
,
Olsson
,
M. G.
, and
Lindkvist
,
R.
,
2007
, “
Energy Efficient Rolling
,”
ABB Rev.
,
2
, pp.
49
52
.
28.
Green
,
D.
,
1972
, “
Continuous Extrusion-Forming of Wire Sections
,”
J. Inst. Met.
,
100
, pp.
295
300
.
29.
Obikawa
,
T.
, and
Usui
,
E.
,
1996
, “
Computational Machining of Titanium Alloy–Finite Element Modeling and a Few Results
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
208
215
.10.1115/1.2831013
30.
Schrock
,
D. J.
,
Kang
,
D.
,
Bieler
,
T. R.
, and
Kown
,
P.
,
2014
, “
Phase Dependent Tool Wear in Turning Ti-6Al-4V Using Polycrystalline Diamond and Carbide Inserts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041018
.10.1115/1.4027674
31.
Davies
,
M. A.
,
Chou
,
Y.
, and
Evans
,
C. J.
,
1996
, “
On Chip Morphology, Tool Wear and Cutting Mechanics in Finish Hard Turning
,”
CIRP Ann.-Manuf. Technol.
,
45
(
1
), pp.
77
82
.10.1016/S0007-8506(07)63020-0
32.
Obikawa
,
T.
,
Sasahara
,
H.
,
Shirakashi
,
T.
, and
Usui
,
E.
,
1997
, “
Application of Computational Machining Method to Discontinuous Chip Formation
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4B
), pp.
667
674
.10.1115/1.2836807
You do not currently have access to this content.