This study focuses on addressing the severe plastic deformation (SPD) behavior and the effects of machining parameters on microstructure alternations in machined surface created from high-speed machining. A finite element (FE) model is proposed to predict the orthogonal machining of Al6061-T6 alloys at high speeds. By extracting strains, strain rates, stresses, and temperatures from this model, a dislocation density-based model is incorporated into it as a user-defined subroutine to predict dislocation densities and grain sizes in machined surface. The predicted results show that dislocation densities decrease with the depths below the machined surface, but grain sizes present an opposite tendency. Higher cutting speeds are associated with thinner plastic deformation layers. Dislocation densities decrease with cutting speeds, but grain sizes increase with cutting speeds in machined surface. Dislocation densities decrease initially and then increase with feed rates. There exists a critical feed rate to generate the maximum SPD layer in machined surface. Tool rake angle has a great impact on the depth of plastic deformation layer. Thus, it affects the distributions of dislocation densities and grain sizes. A large negative rake angle can induce an increased dislocation density in machined surface. The predicted chip thicknesses, cutting forces, distributions of dislocation densities, and grain sizes within the range of machining parameters have good agreement with experiments in terms of chip morphology, cutting forces, microstructure, and microhardness in chip and machined surface.

References

1.
Liu
,
C. R.
, and
Barash
,
M. M.
,
1976
, “
The Mechanical State of the Sub Layer of the Surface Generated by Chip Removal Process, I: Cutting With a Sharp Tool, and Part II: Cutting with a Tool with Flank Wear
,”
ASME Trans. J. Eng. Ind.
,
98
(
4
), pp.
1192
1208
.10.1115/1.3439081
2.
Liu
,
C. R.
, and
Mittal
,
S.
,
1996
, “
Single-Step Superfinish Hard Machining: Feasibility and Feasible Cutting Conditions
,”
Rob. Comput. Integr. Manuf.
,
12
(
1
), pp.
15
27
.10.1016/0736-5845(95)00029-1
3.
Shi
,
J.
, and
Liu
,
C. R.
,
2003
, “
Decomposition of Thermal and Mechanical Effects on the Microstructure and Hardness of Hard Turned Surface
,”
ASME J. Manuf. Sci. Eng.
126
(
2
), pp.
264
273
.10.1115/1.1751190
4.
Shi
,
J.
, and
Liu
,
C. R.
,
2005
, “
On Predicting Material Softening Effect in Hard Turning—Part I: Construction of Material Softening Model
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
476
483
.10.1115/1.1948400
5.
Shi
,
J.
, and
Liu
,
C. R.
,
2005
, “
On Predicting Material Softening Effect in Hard Turning—Part II: Finite Element Modeling and Verification
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
484
491
.10.1115/1.1948402
6.
Majumdar
,
P.
,
Jayaramachandran
,
R.
, and
Ganesan
,
S.
,
2005
, “
Finite Element Analysis of Temperature Rise in Metal Cutting Processes
,”
Appl. Therm. Eng.
,
25
(
14–15
), pp.
2152
2168
.10.1016/j.applthermaleng.2005.01.006
7.
Calistes
,
R.
,
Swaminathan
,
S.
,
Murthy
,
T. G.
,
Huang
,
C.
,
Saldana
,
C.
,
Shankar
,
M. R.
, and
Chandrasekar
,
S.
,
2009
, “
Controlling Gradation of Surface Strains and Nanostructure by Large-Strain Machining
,”
Scr. Mater.
,
60
(
1
), pp.
17
20
.10.1016/j.scriptamat.2008.08.027
8.
Lu
,
J. Z.
,
Luo
,
K. Y.
,
Zhang
,
Y. K.
,
Cui
,
C. Y.
,
Sun
,
G. F.
,
Zhou
,
J. Z.
,
Zhang
,
L.
,
You
,
J.
,
Chen
,
K. M.
, and
Zhong
,
J. W.
,
2010
, “
Grain Refinement of LY2 Aluminum Alloy Induced by Ultra-High Plastic Strain During Multiple Laser Shock Processing Impacts
,”
Acta Mater.
,
58
(
4
), pp.
3984
3994
.10.1016/j.actamat.2010.03.026
9.
Ding
,
H.
, and
Shin
,
Y. C.
,
2012
, “
Dislocation Density-Based Modeling of Subsurface Grain Refinement With Laser-Induced Shock Compression
,”
Comput. Mater. Sci.
,
53
(
1
), pp.
79
88
.10.1016/j.commatsci.2011.08.038
10.
Baik
,
S. C.
,
Estrin
,
Y.
,
Kim
,
H. S.
, and
Hellmig
,
R. J.
,
2003
, “
Dislocation Density-Based Modeling of Deformation Behavior of Aluminum Under Equal Channel Angular Pressing
,”
Mater. Sci. Eng., A
,
351
, pp.
86
97
.10.1016/S0921-5093(02)00847-X
11.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2012
, “
Predictive Modeling of Grain Refinement During Multi-Pass Cold Rolling
,”
J. Mater. Process. Technol.
,
212
(
5
), pp.
1003
1013
.10.1016/j.jmatprotec.2011.12.005
12.
Ranganath
,
S.
,
Guo
,
C.
, and
Hegde
,
P.
,
2009
, “
A Finite Element Modeling Approach to Predicting White Layer Formation in Nickel Superalloys
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
77
80
.10.1016/j.cirp.2009.03.109
13.
Ramesh
,
A.
, and
Melkote
,
S.
,
2008
, “
Modeling of White Layer Formation Under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
402
414
.10.1016/j.ijmachtools.2007.09.007
14.
Shi
,
J.
, and
Liu
,
C. R.
,
2006
, “
On Predicting Chip Morphology and Phase Transformation in Hard Machining
,”
Int. J. Adv. Manuf. Technol.
,
27
(
5
), pp.
645
654
.10.1007/s00170-004-2242-0
15.
Shi
,
J.
,
Wang
,
J. Y.
, and
Liu
,
C. R.
,
2006
, “
Modeling White Layer Thickness Based on the Cutting Parameters of Hard Machining
,”
J. Eng. Manuf.
,
220
(
2
), pp.
119
128
.10.1243/095440505X32977
16.
Swaminathan
,
S.
,
Brown
,
T. L.
,
Chandrasekar
,
S.
,
McNelley
,
T. R.
, and
Compton
,
W. D.
,
2007
, “
Severe Plastic Deformation of Copper by Machining: Microstructure Refinement and Nanostructure Evolution With Strain
,”
Scr. Mater.
,
56
, pp.
1047
1050
.10.1016/j.scriptamat.2007.02.034
17.
Umbrello
,
D.
, and
Filice
,
L.
,
2009
, “
Improving Surface Integrity in Orthogonal Machining of Hardened AISI 52100 Steel by Modeling White and Dark Layers Formation
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
73
76
.10.1016/j.cirp.2009.03.106
18.
Umbrello
,
D.
,
Jayal
,
A. D.
, and
Caruso
,
S.
,
2010
, “
Modeling of White and Dark Layer Formation in Hard Machining of AISI 52100 Bearing Steel
,”
Mach. Sci. Technol.
,
14
(
1
), pp.
128
147
.10.1080/10910340903586525
19.
Ding
,
H.
, and
Shin
,
Y. C.
,
2013
, “
Multi-Physics Modeling and Simulations of Surface Microstructure Alteration in Hard Turning
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
877
886
.10.1016/j.jmatprotec.2012.12.016
20.
Ding
,
H. T.
, and
Shin
,
Y. C.
,
2011
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Commercially Pure Titanium
,”
ASME
Paper No. MSEC2011-50220.10.1115/MSEC2011-50220
21.
Ding
,
H. T.
,
Shen
,
N. G.
, and
Shin
,
Y. C.
,
2011
, “
Modeling of Grain Refinement in Aluminum and Copper Subjected to Cutting
,”
Comput. Mater. Sci.
,
50
(
10
), pp.
3016
3025
.10.1016/j.commatsci.2011.05.020
22.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Int. Ballist. Comm.
,
21
, pp.
541
547
.
23.
Timothy
,
J. H.
,
Douglas
,
W. T.
, and
Krishan
,
D. B.
,
2001
, “
Constitutive Modeling of Aluminum Nitride for Large Strain, High-Strain Rate, and High-Pressure Applications
,”
Int. J. Impact Eng.
,
25
(
3
), pp.
211
231
.10.1016/S0734-743X(00)00046-4
24.
Özel
,
T.
, and
Zeren
,
E.
,
2005
, “
Finite Element Method Simulation of Machining of AISI 1045 Steel With a Round Edge Cutting Tool
,”
Proceedings of the 8th CIRP International Workshop on Modeling of Machining Operations
, pp.
533
542
.
25.
Guo
,
Y. B.
, and
Liu
,
C. R.
,
2002
, “
3D FEA Modeling of Superfinish Hard Turning
,”
ASME J. Manuf. Sci. Eng.
,
124
(
89
), pp.
189
199
.10.1115/1.1430678
26.
Arrazola
,
P. J.
, and
Özel
,
T.
,
2010
, “
Investigations on the Effects of Friction Modeling in Finite Element Simulation of Machining
,”
Int. J. Mech. Sci.
,
52
(
1
), pp.
31
42
.10.1016/j.ijmecsci.2009.10.001
27.
Sartkulvanich
,
P.
,
Altan
,
T.
, and
Göcmen
,
A.
,
2005
, “
Effects of Flow Stress and Friction Models in Finite Element Simulation of Orthogonal Cutting—A Sensitivity Analysis
,”
Mach. Sci. Technol.
,
9
(
1
), pp.
1
26
.10.1081/MST-200051211
28.
Bonnet
,
C.
,
Valiorgue
,
F.
,
Rech
,
J.
, and
Hamdi
,
H.
,
2008
, “
Improvement of the Numerical Modeling in Orthogonal Dry Cutting of an AISI 316L Stainless Steel by the Introduction of a New Friction Model
,”
ASME CIRP J. Manuf. Sci. Technol.
,
1
(
2
), pp.
114
118
.10.1016/j.cirpj.2008.09.006
29.
Yang
,
X.
, and
Liu
,
C. R.
,
2002
, “
A New Stress-Based Model of Friction Behavior in Machining and its Significant Impact on Residual Stresses Computed by Finite Element Method
,”
Int. J. Mech. Sci.
,
44
(
4
), pp.
703
723
.10.1016/S0020-7403(02)00008-5
30.
Zhang
,
X. P.
,
Wu
,
S. F.
,
Wang
,
H. P.
, and
Liu
,
C. R.
,
2011
, “
Predicting the Effects of Cutting Parameters and Tool Geometry on Hard Turning Process Using Finite Element Method
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041010
.10.1115/1.4004611
31.
Guo
,
Y. B.
,
2003
, “
An Integral Method to Determine the Mechanical Behavior of Materials in Metal Cutting
,”
J. Mater. Process. Technol.
,
142
(
1
), pp.
72
81
.10.1016/S0924-0136(03)00462-X
32.
Moraitis
,
G. A.
, and
Labeas
,
G. N.
,
2008
, “
Residual Stress and Distortion Calculation of Laser Beam Welding for Aluminum Lap Joints
,”
J. Mater. Process. Technol.
,
198
(
1–3
), pp.
260
269
.10.1016/j.jmatprotec.2007.07.013
33.
Estrin
,
Y.
,
Tóth
,
L. S.
,
Moinari
,
A.
, and
Bréchet
,
Y.
,
1998
, “
A Dislocation-Based Model for All Hardening Stage in Large Strain Deformation
,”
Acta Mater.
,
46
(
15
), pp.
5509
5522
.10.1016/S1359-6454(98)00196-7
34.
Ding
,
L. Q.
,
2013
, “
Research on Dislocation Density and Grain Size Refinement on Machined Surface of Aluminum Alloys
,” M.S. thesis, Shanghai Jiao Tong University, Shanghai, China.
35.
Puerta Velásquez
,
J. D.
,
Tidu
,
A.
,
Bolle
,
B.
,
Chevrier
,
P.
, and
Fundenberger
,
J.-J.
,
2010
, “
Sub-Surface and Surface Analysis of High Speed Machined Ti–6Al–4V Alloy
,”
Mater. Sci. Eng., A
,
527
(
10–11
), pp.
2572
2578
.10.1016/j.msea.2009.12.018
You do not currently have access to this content.