Droplet spreading on a rotating surface has been modeled with an aim to design an efficient atomization-based cutting fluid (ACF) system for micromachining processes. To this end, single-droplet impingement experiments are conducted on a rotating surface to capture the 3D shape of a droplet upon impingement. A parameterization scheme is then developed to mathematically define the 3D shape of droplet upon impingement. The shape information is used to develop an energy-based model for droplet spreading. The droplet spreading model captures the experimental results within 10% accuracy. The spreading model is then used to predict the cooling and lubrication for an ACF-based microturning process. The model captures the cooling and lubrication trends observed in microturning experiments. A parametric study is conducted to identify the significant factors affecting the performance of an ACF system. Droplet speed is found to have a dominant effect on both cooling and lubrication performance, particularly, with a low surface tension fluid for cooling and a low surface tension and high viscosity fluid for lubrication.

References

1.
Jun
,
M. B.
, Joshi, S. S.,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
An Experimental Evaluation of an Atomization-Based Cutting Fluid Application System for Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031118
.10.1115/1.2738961
2.
Ghai
,
I.
,
Wentz
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Samuel
,
J.
,
2010
, “
Droplet Behavior on a Rotating Surface for Atomization-Based Cutting Fluid Application in Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011017
.10.1115/1.4000859
3.
Attané
,
P.
,
Girard
,
F.
, and
Morin
,
V.
,
2007
, “
An Energy Balance Approach of the Dynamics of Drop Impact on a Solid Surface
,”
Phys. Fluids
,
19
, p.
012101
.10.1063/1.2408495
4.
Bechtel
,
S. E.
,
Bogy
,
D. B.
, and
Talke
,
F. E.
,
1981
, “
Impact of Liquid Drop Against a Flat Surface
,”
IBM J. Res. Dev.
,
25
(
6
), pp.
963
971
.10.1147/rd.256.0963
5.
Mao
,
T.
,
Kuhn
,
D. C. S.
, and
Tran
,
H.
,
1997
, “
Spread and Rebound of Liquid Droplets Upon Impact on Flat Surfaces
,”
AIChE J.
,
43
(
9
), pp.
2169
2179
.10.1002/aic.690430903
6.
Lim
,
T.
,
Han
,
S.
,
Chung
,
J.
,
Chung
,
J. K.
,
Ko
,
S.
, and
Grigoropoulos
,
C. P.
,
2009
, “
Experimental Study on Spreading and Evaporation of Inkjet Printed Pico-Liter Droplet on a Heated Substrate
,”
Int. J. Heat Mass Transfer
,
52
, pp.
431
441
.10.1016/j.ijheatmasstransfer.2008.05.028
7.
Adair
,
K. G.
,
2009
, “
Development of a Unique Topology for a Hard Turning Micro-Scale Machine Tool
,” M.S. thesis,
University of Illinois at Urbana-Champaign
,
Urbana
, IL.
8.
Ellicott
,
G. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2009
, “
Machinability Investigation of Micro-Scale Hard Turning of 52100 Steel
,”
North Am. Manuf. Res. Inst. SME
,
37
, pp.
143
150
.
9.
Chandra
,
S.
,
Di
Marzo
,
M.
,
Qiao
,
Y. M.
, and
Tartarini
,
P.
,
1996
, “
Effect of Liquid-Solid Contact Angle on Droplet Evaporation
,”
Fire Saf. J.
,
27
, pp.
141
158
.10.1016/S0379-7112(96)00040-9
10.
Wang
,
C. Y.
,
1973
, “
Axisymmetric Stagnation Point Flow Over a Moving Plate
,”
AIChE J.
,
19
, pp.
1080
1081
.10.1002/aic.690190540
11.
Chandra
,
S.
, and
Avedisian
,
C. T.
,
1991
, “
On the Collision of a Droplet With a Solid Surface
,”
Proc. R. Soc. London
,
432
, pp.
13
41
.10.1098/rspa.1991.0002
12.
Schiaffino
,
S.
, and
Sonin
,
A. A.
,
1997
, “
Molten Droplet Deposition and Solidification at Low Weber Numbers
,”
Phys. Fluids
,
9
(
11
), pp.
3172
3187
.10.1063/1.869434
13.
Tio
,
K. K.
, and
Sadhal
,
S. S.
,
1992
, “
Dropwise Evaporation—Thermal Analysis of Multidrop Systems
,”
Int. J. Heat Mass Transfer
,
35
(
8
), pp.
1987
2004
.10.1016/0017-9310(92)90201-3
14.
Walklate
,
P. J.
,
Weiner
,
K. L.
, and
Parkin
,
C. S.
,
1996
, “
Analysis of and Experimental Measurements Made on a Moving Air-Assisted Sprayer With Two-Dimensional Air-Jets Penetrating a Uniform Crop Canopy
,”
J. Agric. Eng. Res.
,
63
(
4
), pp.
365
377
.10.1006/jaer.1996.0039
15.
Rukosuyev
,
M.
,
Goo
,
C. S.
,
Jun
,
M. B. G.
, and
Park
,
S. S.
,
2010
, “
Design and Development of Cutting Fluid System Based on Ultrasonic Atomization for Micro-Machining
,”
North Am. Manuf. Res. Inst. SME
,
38
, pp.
97
104
.
16.
Langlois
,
W. E.
,
1965
, “
A Wedge-Flow Approach to Lubrication Theory
,”
Q. Appl. Math.
,
23
(
1
), pp.
39
45
.
17.
Dobre
,
M.
, and
Bolle
,
L.
,
2002
, “
Practical Design of Ultrasonic Spray Devices: Experimental Testing of Several Atomizer Geometries
,”
Exp. Therm. Fluid Sci.
,
26
(
2
), pp.
205
211
.10.1016/S0894-1777(02)00128-0
You do not currently have access to this content.