Laser welding is used extensively in industry for joining various materials in the assembly of components and structures. Localized melting followed by rapid cooling results in the formation of a weld bead and generation of residual stress. Selection of the appropriate combination of input parameters and understanding their effects is important to achieve the required weld quality with a smooth welding surface. In the present work, a sequentially coupled thermo-structural multiphase analysis was carried out with the objectives of predicting the effect of laser parameters on the change in surface topology of the weld bead and its subsequent effect on structural properties. The work shows that the laser welding parameters strongly affect the weld bead shape, which eventually affects the weld quality. A net shaped weld bead demonstrates better performance in terms of stress distribution and distortion than other weld bead shapes. The numerical simulation results were compared with the experimental observations performed on a mild steel sheet using a fibre laser and the results are in good agreement in terms of weld bead cross-sectional profile and strength.

Reference

1.
Rosenthal
,
D.
,
1941
, “
Mathematical Theory of Heat Distribution During Welding and Cutting
,”
Weld. J. (London)
,
20
(
5
), pp.
220
234
.
2.
Nedjar
,
B.
,
2002
, “
An Enthalpy-Based Finite Element Method for Nonlinear Heat Problems Involving Phase Change
,”
Comput. Struct.
,
80
(
1
), pp.
9
21
.10.1016/S0045-7949(01)00165-1
3.
Carmignani
,
C.
,
Mares
,
R.
, and
Toselli
,
G.
,
1999
, “
Transient Finite Element Analysis of Deep Penetration Laser Welding Process in a Singlepass Butt-Welded Thick Steel Plate
,”
Comput. Methods Appl. Mech. Eng.
,
179
(
3–4
), pp.
197
214
.10.1016/S0045-7825(99)00043-2
4.
Bonifaz
,
E.
,
2000
, “
Finite Element Analysis of Heat Flow in Single-Pass Arc Welds
,”
Weld. J. (London)
,
79
(
5
), pp.
121
125
.
5.
Wei
,
P. S.
,
Yeh
,
J. S.
,
Ting
,
C. N.
,
Debroy
,
T.
,
Chung
,
F. K.
, and
Lin
,
C. L.
,
2009
, “
The Effects of Prandtl Number on Wavy Weld Boundary
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3790
3798
.10.1016/j.ijheatmasstransfer.2009.02.020
6.
Arora
,
A.
,
Roy
,
G. G.
, and
Debroy
,
T.
,
2009
, “
Unusual Wavy Weld Pool Boundary From Dimensional Analysis
,”
Scr. Mater.
,
60
(
2
), pp.
68
71
.10.1016/j.scriptamat.2008.08.035
7.
Rai
,
R.
, and
Debroy
,
T.
,
2006
, “
Tailoring Weld Geometry During Keyhole Mode Laser Welding Using a Genetic Algorithm and a Heat Transfer Model
,”
J. Phys. D
,
39
(
6
), pp.
1257
1266
.10.1088/0022-3727/39/6/037
8.
Rai
,
R.
,
Kelly
,
S. M.
,
Martukanitz
,
R. P.
, and
Debroy
,
T.
,
2008
, “
A Convective Heat-Transfer Model for Partial and Full Penetration Keyhole Mode Laser Welding of a Structural Steel
,”
Metall. Mater. Trans. A
,
39
(
1
), pp.
98
112
.10.1007/s11661-007-9400-6
9.
Robert
,
A.
, and
Debroy
,
T.
,
2001
, “
Geometry of Laser Spot Welds From Dimensionless Numbers
,”
Metall. Mater. Trans. B
,
32
(
5
), pp.
941
947
.10.1007/s11663-001-0080-0
10.
Slużalec
,
A.
,
1988
, “
Flow of Metal Undergoing Laser Irradiation
,”
Numer. Heat Transfer
,
13
(
2
), pp.
253
263
.
11.
Ye
,
X. H.
, and
Chen
,
X.
,
2002
, “
Three-Dimensional Variable-Property Modeling of Laser Full-Penetration Welding Characteristics
,”
Prog. Comput. Fluid Dyn.
,
2
(
2–4
), pp.
106
113
.10.1504/PCFD.2002.003223
12.
Srinivasan
,
J.
, and
Basu
,
B.
,
1986
, “
A Numerical Study of Thermocapillary Flow in a Rectangular Cavity During Laser Melting
,”
Int. J. Heat Mass Transfer
,
29
(
4
), pp.
563
572
.10.1016/0017-9310(86)90090-6
13.
Pang
,
S.
,
Chen
,
L.
,
Zhou
,
J.
,
Yin
,
Y.
, and
Chen
,
T.
,
2011
, “
A Three-Dimensional Sharp Interface Model for Self-Consistent Keyhole and Weld Pool Dynamics in Deep Penetration Laser Welding
,”
J. Phys. D
,
44
(
2
), p.
025301
.10.1088/0022-3727/44/2/025301
14.
Sahin
,
S.
,
Toparli
,
M.
,
Ozdemir
,
I.
, and
Sasaki
,
S.
,
2003
, “
Modelled and Measured Residual Stresses in a Bimaterial Joint
,”
J. Mater. Process. Technol.
,
132
(
1–3
), pp.
235
241
.10.1016/S0924-0136(02)00932-9
15.
Josefson
,
B. L.
,
1993
, “
Prediction of Residual Stresses and Distortions in Welded Structures
,”
ASME J. Offshore Mech. Arct. Eng.
,
115
(
1
), pp.
52
57
.10.1115/1.2920089
16.
Kamara
,
A. M.
,
Wang
,
W.
,
Marimuthu
,
S.
,
Pinkerton
,
A. J.
, and
Li
,
L.
, eds.,
2010
, “
Influence of Melt Pool Convection on Residual Stress Induced in Laser Cladding and Powder Deposition
,” Proceeding of the 4th Pacific International Conference on Applications of Lasers and Optics (PICALO 2010), Paper No. 604.
17.
Safdar
,
S.
,
Pinkerton
,
A. J.
,
Moat
,
R.
,
Li
,
L.
,
Sheikh
,
M. A.
,
Preuss
,
M.
, and
Withers
,
P. J.
, eds.,
2007
, “
An Anisotropic Enhanced Thermal Conductivity Approach for Modelling Laser Melt Pools
,” Proceeding of the 26th International Congress on Applications of Lasers and Electro-Optics (ICALEO 2007), Paper No. 1305, pp.
665
673
.
18.
Kong
,
F.
, and
Kovacevic
,
R.
,
2010
, “
3D Finite Element Modeling of the Thermally Induced Residual Stress in the Hybrid Laser/Arc Welding of Lap Joint
,”
J. Mater. Process. Technol.
,
210
(
6–7
), pp.
941
950
.10.1016/j.jmatprotec.2010.02.006
19.
Sundar
,
M.
,
Nath
,
A. K.
,
Bandyopadhyay
,
D. K.
,
Chaudhuri
,
S. P.
,
Dey
,
P. K.
, and
Misra
,
D.
,
2011
, “
Finite Element Analysis of Residual Stress and Distortion in Laser Welded Stainless Plate
,”
J. Manuf. Sci. Prod.
,
8
(
2–4
), pp.
123
136
.10.1515/IJMSP.2007.8.2-4.123
20.
Eghlio
,
R. M.
,
Pinkerton
,
A. J.
, and
Li
,
L.
, eds.,
2009
, “
Fibre Laser Net-Shape Welding of Steels
,” Proceeding of the 28th International Congress on Applications of Lasers and Electro-Optics (ICALEO 2009), Paper No. 101, pp.
1402
1408
.
21.
Eghlio
,
R. M.
,
Pinkerton
,
A. J.
,
Sezer
,
H. K.
, and
Li
,
L.
, eds.,
2010
, “
Process Characteristics of Single Mode Fibre Laser Net Shape Welding
,” Proceeding of the 4th Pacific International Conference on Applications of Lasers and Optics (PICALO 2010), Paper No. 406.
22.
Li
,
L.
,
Eghlio
,
R.
, and
Marimuthu
,
S.
,
2011
, “
Laser Net Shape Welding
,”
CIRP Ann.
,
60
(
1
), pp.
223
226
.10.1016/j.cirp.2011.03.066
23.
Britishstandards
,
2006
, “
Cold Rolled Low Carbon Steel Flat Products for Cold Forming. Technical Delivery Conditions
,” Technical Report No. Bs En 10130:2006, British Standards.
24.
Fluent
,
2009
,
13.0 User's Guide
,
ANSYS Inc
.
25.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Mater. Trans. B
,
15
(
2
), pp.
299
305
.10.1007/BF02645115
26.
Zhao
,
C. X.
,
Kwakernaak
,
C.
,
Pan
,
Y.
,
Richardson
,
I. M.
,
Saldi
,
Z.
,
Kenjeres
,
S.
, and
Kleijn
,
C. R.
,
2010
, “
The Effect of Oxygen on Transitional Marangoni Flow in Laser Spot Welding
,”
Acta Mater.
,
58
(
19
), pp.
6345
6357
.10.1016/j.actamat.2010.07.056
27.
Amara
,
E. H.
, and
Fabbro
,
R.
,
2010
, “
Modeling of Humps Formation During Deep-Penetration Laser Welding
,”
Appl. Phys. A
,
101
(
1
), pp.
111
116
.10.1007/s00339-010-5768-z
28.
Semak
,
V.
, and
Matsunawa
,
A.
,
1997
, “
The Role of Recoil Pressure in Energy Balance During Laser Materials Processing
,”
J. Phys. D
,
30
(
18
), pp.
2541
2552
.10.1088/0022-3727/30/18/008
29.
Gale
,
W. F.
, and
Totemeier
,
T. C.
, eds.,
2004
,
Smithells Metals Reference Book
,
Elsevier
,
Boston.
30.
Krasnoperov
,
M. Y.
,
Pieters
,
R.
, and
Richardson
,
I. M.
,
2004
, “
Weld Pool Geometry During Keyhole Laser Welding of Thin Steel Sheets
,”
Sci. Technol. Weld. Joining
,
9
(
6
), pp.
501
506
.10.1179/136217104225021733
You do not currently have access to this content.