This research investigates the strategy to achieve high material removal rate in tool path planning for the near-dry electrical discharge machining (EDM) milling process using tubular electrode with a lead angle. The proposed strategy to prevent leakage of dielectric mist from the tubular electrode is different from the conventional end milling process due to the difference in material removal mechanism. Tool positions and orientations to engage the electrode into workpiece, machining of workpiece edge, minimum lead angle to machine a curved surface, and minimum and maximum path interval to prevent the mist leakage are derived. Experiments are conducted to validate the model prediction of path planning. Experimental results show plunge method has the highest material removal rate for engaging method, and electrode hole must be located within the workpiece surface when edge of workpiece is machined. For curvature machining, the proposed path planning strategy yields higher material removal rate compared with that from the conventional strategy, which only avoids gouging. This study also reveals that, due to the tool wear and crowning of electrode tip, it is difficult to accurately determine the minimum path interval which will cause the mist leakage.

References

1.
Kaneko
,
T.
, and
Tsuchiya
,
M.
, 1988, “
Three-Dimensional Numerically Controlled Contouring by Electric Discharge Machining With Compensation for the Deformation of Cylindrical Tool Electrodes
,”
Prec. Eng.
,
10
(
3
), pp.
157
163
.
2.
Bleys
,
P.
,
Kruth
,
J. P.
,
Zyrd
,
A.
,
Delpretti
,
R.
, and
Tricarico
,
C.
, 2002, “
Real-Time Tool Wear Compensation in Milling EDM
,”
Ann. CIRP
,
51
(
1
), pp.
157
160
.
3.
Kunieda
,
M.
,
Yoshida
,
M.
, and
Taniguchi
,
N.
, 1997, “
Electrical Discharge Machining in Gas
,”
Ann. CIRP
,
46
(
1
), pp.
143
146
.
4.
Kunieda
,
M.
, and
Furudate
,
C.
, 2001, “
High Precision Finish Cutting by Dry WEDM
,”
Ann. CIRP
,
50
(
1
), pp.
121
124
.
5.
Kunieda
,
M.
,
Miyoshi
,
Y.
,
Takaya
,
T.
,
Nakajima
,
N.
,
Yu
,
Z.
, and
Yoshida
,
M.
, 2003, “
High Speed 3D Milling by Dry EDM
,”
Ann. CIRP
,
52
(
1
), pp.
147
150
.
6.
Wang
,
T.
, and
Kunieda
,
M.
, 2004, “
Dry WEDM for Finish Cut
,”
Key Eng. Mater.
,
259–260
, pp.
562
566
.
7.
Yu
,
Z. B.
,
Takahashi
,
J.
, and
Kunieda
,
M.
, 2004, “
Dry Electrical Discharge Machining of Cemented Carbide
,”
J. Mater. Process. Technol.
,
149
, pp.
353
357
.
8.
Yu
,
Z. B.
,
Takahashi
,
J.
,
Nakajima
,
N.
,
Sano
,
S.
, and
Kunieda
,
M.
, 2005, “
Feasibility of 3-D Surface Machining by Dry EDM
,”
Int. J. Elec. Mach.
,
10
, pp.
15
20
.
9.
Tao
,
J.
,
Shih
,
A.J.
, and
Ni
,
J.
, 2008, “
Experimental Study of the Dry and Near-Dry Electrical Discharge Milling Processes
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), pp.
011002
–0110-1-
9
.
10.
Fujiki
,
M.
,
Ni
,
J.
, and
Shih
,
A. J.
, 2009. “
Investigation of the Effect of Electrode Orientation and Fluid Flow in Near-Dry EDM Milling
,”
Int. J. Mach. Tools Manuf.
,
49
(
10
), pp.
749
758
.
11.
Nakao
,
S.
,
Shibayama
,
T.
,
Kunieda
,
M.
, and
Araie
,
I.
, 2005, “
Curved Surface Processing by Dry EDM Using a 5-Axis Machine
,”
Academic Lecture of the Japan Society for Precision Engineering
, Spring 2005 (in Japanese).
12.
Takeuchi
,
Y.
, and
Watanabe
,
T.
, 1992, “
Generation of 5-Axis Control Collision-Free Tool Path and Postprocessing for NC Data
,”
Ann. CIRP
,
41
(
1
), pp.
539
542
.
13.
Kruth
,
J. P.
, and
Klewais
,
P.
, 1994, “
Optimization and Dynamic Adaptation of the Cutter Inclination During Five-Axis Milling of Sculptured Surfaces
,”
Ann. CIRP
,
43
(
1
), pp.
349
354
.
14.
Lee
,
Y. S.
, and
Ji
,
H.
, 1997, “
Surface Interrogation and Machining Strip Evaluation for 5-Axis CNC Die and Mold Machining
,”
Int. J. Prod. Res.
,
35
(
1
), pp.
225
252
.
15.
Lee
,
Y. S.
, 1998. “
Mathematical Modelling Using Different Endmills and Tool Placement Problems for 4- and 5-Axis NC Complex Surface Machining
,”
Int. J. Prod. Res.
,
36
(
3
), pp.
785
814
.
16.
Lee
,
Y. S.
, 1998, “
Non-Isoparametric Tool Path Planning by Machining Strip Evaluation for 5 Axis Sculptured Surface Machining
,”
Comput.-Aided. Des.
,
30
(
7
), pp.
559
570
.
17.
Lo
,
C. C.
, 1999, “
Efficient Cutter-Path Planning for Five-Axis Surface Machining With a Flat-End Cutter
,”
Comput.-Aided Des.
,
31
(
9
), pp.
557
566
.
18.
Lo
,
C. C.
, 1999, “
Real-Time Generation and Control of Cutter Path for 5-Axis CNC Machining
,”
Int. J. Mach. Tools Manuf.
,
39
(
3
), pp.
471
488
.
19.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
, 2001, “
High Speed CNC System Design. Part I: Jerk Limited Trajectory Generation and Quintic Spline Interpolation
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1323
1345
.
20.
Jun
,
C. S.
,
Cha
,
K.
, and
Lee
,
Y. S.
, 2003, “
Optimizing Tool Orientations for 5-Axis Machining by Configuration-Space Search Method
,”
Comput.-Aided Des.
,
35
(
6
), pp.
549
566
.
21.
Lai
,
X. D.
,
Zhou
,
Y. F.
,
Peng
,
F. Y.
, and
Yan
,
S. J.
, 2003, “
Geometrical Error Analysis and Control for 5-Axis Machining of Large Sculptured Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
21
(
2
), pp.
110
118
.
22.
Affouard
,
A.
,
Duc
,
E.
,
Lartigue
,
C.
,
Langeron
,
J. M.
, and
Bourder
,
P.
, 2004, “
Avoiding 5-Axis Singularities Using Tool Path Deformation
,”
Int. J. Mach. Tools Manuf.
,
44
(
4
), pp.
415
425
.
23.
Ding
,
S.
, and
Jiang
,
R.
, 2004, “
Tool Path Generation for 4-Axis Contour EDM Rough Machining
,”
Int. J. Mach. Tools Manuf.
,
44
(
14
), pp.
1493
1502
.
You do not currently have access to this content.