Existing thermal sensors for machining processes are having difficulties to reliably provide high spatial and temporal resolutions for monitoring and control of the dynamic thermal phenomena at the tool-workpiece interface during machining. This paper presents a novel approach to obtain transient tool internal temperature data reliably from a very close distance to the tool-workpiece interface. An array of nine microthin film thermocouples, fabricated using standard microfabrication methods, has been embedded into polycrystalline cubic boron nitride (PCBN) cutting inserts by means of diffusion bonding. Scanning electron microscopy was performed to examine thin film sensor and host material interactions at the bonding interface and to determine optimal bonding parameters. The thin film microthermal sensors were statically and dynamically characterized by heating in a tube furnace and application of pulsed laser radiation. The embedded thin film thermal sensors exhibit good linearity, sensitivity, and extremely fast response time. The instrumented PCBN inserts were applied in machining of aluminum alloy 6061 disks at various cutting speeds and feed rates. Embedded into the PCBN inserts at numerous distances of 75450μm from tool rake face and 100500μm from tool flank face, these microsensors enabled the sensing of transient cutting temperature fields with high spatial and temporal resolutions. The temperature data obtained during cutting demonstrate the functionality of the tool embedded microthermal sensors and their value for fast, accurate, and reliable monitoring, which will be of significance for both fundamental study and in-process control of machining operations.

1.
Tönshoff
,
H. K.
, and
Inasaki
,
I.
, 2001,
Sensors in Manufacturing
,
Wiley
,
New York
.
2.
Byrne
,
G.
,
Dornfeld
,
D.
,
Inasaki
,
I.
,
Ketteler
,
G.
,
König
,
W.
, and
Teti
,
R.
, 1995, “
Tool Condition Monitoring (TCM)—The Status of Research and Industrial Application
,”
CIRP Ann.
0007-8506,
44
, pp.
541
567
.
3.
Dornfeld
,
D.
,
Lee
,
Y.
, and
Chang
,
A.
, 2003, “
Monitoring of Ultraprecision Machining Processes
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
21
, pp.
571
578
.
4.
Liang
,
S. Y.
,
Hecker
,
R. L.
, and
Landers
,
R. G.
, 2004, “
Machining Process Monitoring and Control: The State-of-the-Art
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
297
310
.
5.
Shinozuka
,
J.
,
Basti
,
A.
, and
Obikawa
,
T.
, 2008, “
Development of Cutting Tool With Built-In Thin Film Thermocouples for Measuring High Temperature Fields in Metal Cutting Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
, p.
034501
.
6.
Basti
,
A.
,
Obikawa
,
T.
, and
Shinozuka
,
J.
, 2007, “
Tools With Built-In Thin Film Thermocouple Sensors for Monitoring Cutting Temperature
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
, pp.
793
798
.
7.
Yoshioka
,
H.
,
Hashizume
,
H.
, and
Shinn
,
H.
, 2004, “
In-Process Microsensor for Ultraprecision Machining
,”
IEE Proc.: Sci., Meas. Technol.
1350-2344,
151
, pp.
121
125
.
8.
Tönshoff
,
H. K.
,
Wobker
,
H. G.
, and
Ziehbeil
,
F.
, 1994, “
Distribution of Temperature and Stress in the Contact Zone of a Cutting Tool
,”
Production Engineering
,
2
(
1
), pp.
39
42
.
9.
Udd
,
E.
, 1995,
Fiber Optic Smart Structures
,
Wiley
,
New York
.
10.
Du
,
H.
, and
Klamecki
,
B. E.
, 1999, “
Force Sensors Embedded in Surfaces for Manufacturing and Other Tribological Process Monitoring
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
, pp.
739
748
.
11.
Hautamaki
,
C.
,
Zurn
,
S.
,
Mantell
,
S. C.
, and
Polla
,
D. L.
, 1999, “
Experimental Evaluation of MEMS Strain Sensors Embedded in Composites
,”
J. Microelectromech. Syst.
1057-7157,
8
, pp.
272
279
.
12.
Hautamaki
,
C.
,
Zurn
,
S.
,
Mantell
,
S. C.
, and
Polla
,
D. L.
, 2000, “
Embedded Microelectromechanical Systems (MEMS) for Measuring Strain in Composites
,”
J. Reinf. Plast. Compos.
0731-6844,
19
, pp.
268
277
.
13.
Cheng
,
X.
,
Datta
,
A.
,
Choi
,
H.
,
Zhang
,
X.
, and
Li
,
X.
, 2007, “
Study on Embedding and Integration of Microsensors Into Metal Structures for Manufacturing Applications
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
, pp.
416
424
.
14.
Zhang
,
X.
,
Choi
,
H.
,
Datta
,
A.
, and
Li
,
X.
, 2006, “
Design, Fabrication and Characterization of Metal Embedded Thin Film Thermocouples With Various Film Thicknesses and Junction Sizes
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
900
905
.
15.
Datta
,
A.
,
Choi
,
H.
, and
Li
,
X.
, 2006, “
Batch Fabrication and Characterization of Micro-Thin-Film Thermocouples Embedded in Metal
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
H89
H93
.
16.
Choi
,
H.
,
Datta
,
A.
,
Cheng
,
X.
, and
Li
,
X.
, 2006, “
Microfabrication and Characterization of Embedded Thin Film Thermomechanical Sensors on Metal Substrates for Application in Hostile Manufacturing Environment
,”
J. Microelectromech. Syst.
1057-7157,
15
, pp.
322
329
.
17.
Choi
,
H.
,
Konishi
,
H.
,
Xu
,
H.
, and
Li
,
X.
, 2007, “
Embedding of Micro Thin Film Strain Sensors in Sapphire by Diffusion Bonding
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
2248
2252
.
18.
Choi
,
H.
, and
Li
,
X.
, 2008, “
Experimental Investigations of Laser Micromachining of Nickel Using Thin Film Micro Thermocouples
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
, p.
021002
.
19.
Kazakov
,
N. F.
, 1985,
Diffusion Bonding of Materials
,
Pergamon
,
New York
.
20.
Lei
,
J. -F.
, and
Will
,
H. A.
, 1998, “
Thin-Film Thermocouples and Strain-Gauge Technologies for Engine Applications
,”
Sens. Actuators, A
0924-4247,
65
, pp.
187
193
.
21.
Ren
,
X. J.
,
Yang
,
Q. X.
,
James
,
R. D.
, and
Wang
,
L.
, 2004, “
Cutting Temperatures in Hard Turning Chromium Hardfacings With PCBN Tooling
,”
J. Mater. Process. Technol.
0924-0136,
147
, pp.
38
44
.
You do not currently have access to this content.