A die face morphing concept was recently introduced for quick die design for evolutionary products from their prior generations. Based on this concept, this paper proposes a strain increment method for early formability assessment by predicting strain distribution directly from the part-to-part mapping process. This method consists of mapping the finite element mesh to the part geometry, solving a part-to-part mapping function with smoothness and strain gradient penalties, and extracting strain increment from geometric morphing. It is shown, through a case study, that the strain field estimated by the proposed strain increment method compares well with that from the direct finite element analysis. Since this method does not require the knowledge on new die surface, such formability assessment can serve as a tool for early manufacturing feasibility analysis on the new part design.

1.
Okamoto
,
I.
,
Takahashi
,
A.
,
Sugiura
,
H.
,
Yamada
,
N.
, and
Mori
,
T.
, 1988, “
Computer Aided Design and Evaluation System for Stamping Dies at Toyota
,” SAE Paper No. 880524, pp.
79
89
.
2.
Cardone
,
A.
,
Gupta
,
S. K.
, and
Karnik
,
M.
, 2003, “
A Survey of Shape Similarity Assessment Algorithms for Product Design and Manufacturing Applications
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
3
, pp.
109
118
.
3.
Hsiao
,
S. W.
, and
Liu
,
M. C.
, 2002, “
A Morphing Method for Shape Generation and Image Prediction in Product Design
,”
Des. Stud.
0142-694X,
23
, pp.
533
556
.
4.
Wang
,
C.
,
Horváth
,
I.
, and
Vergeest
,
J. S. M.
, 2002, “
Towards the Reuse of Shape Information in CAD
,”
Proceedings of the Tools and Methods of Competitive Engineering (TMCE)
, Wuhan, China, Apr. 22–26.
5.
Iyer
,
N.
,
Kalyanaraman
,
Y.
,
Lou
,
K.
,
Jayanti
,
S.
, and
Ramani
,
K.
, 2003, “
A Reconfigurable, Intelligent 3D Engineering Shape Search System Part I: Shape Representation
,”
Proceedings of ASME DETC’03, 23rd Computers and Information in Engineering (CIE) Conference
, Chicago, IL, Sept. 2–6.
6.
You
,
C. F.
,
Tsai
,
Y. L.
, and
Liu
,
K. Y.
, 2010, “
Representation and Similarity Assessment in Case-Based Process Planning and Die Design for Manufacturing Automotive Panels
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
51
, pp.
297
310
.
7.
Cicirello
,
V. A.
, and
Regli
,
W. C.
, 2001, “
Machining Feature-Based Comparisons of Mechanical Parts
,”
Proceedings of International Conference on Shape Modeling and Applications
, Genova, Italy.
8.
Zhou
,
L.
,
Hu
,
S. J.
,
Lin
,
G.
, and
Stoughton
,
T.
, 2009, “
Evolutionary Stamping Die Development Using Morphing Technology
,”
Trans. AMRI/SME
1047-3025,
37
, pp.
317
324
.
9.
Wolberg
,
G.
, 1998, “
Image Morphing: A Survey
,”
Visual Comput.
0178-2789,
14
, pp.
360
372
.
10.
Parent
,
R.
, 2002,
Computer Animation: Algorithms and Techniques
,
Morgan Kaufmann
,
San Francisco, CA
.
11.
Rueckert
,
D.
,
Sonoda
,
L. I.
,
Hayes
,
C.
,
Hill
,
D. L. G.
,
Leach
,
M. O.
, and
Hawkes
,
D. J.
, 1999, “
Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images
,”
IEEE Trans. Med. Imaging
0278-0062,
18
, pp.
712
721
.
12.
Sarraga
,
R.
, 2004, “
Modifying CAD/CAM Surfaces According to Displacements Prescribed at a Finite Set of Points
,”
Comput.-Aided Des.
0010-4485,
36
, pp.
343
349
.
13.
Sarraga
,
R.
,
Oetjens
,
T.
,
Wang
,
T.
,
Xu
,
S.
, and
LeBlanc
,
P.
, 2009, “
Volume Morphing to Compensate Stamping Springback
,” SAE International Paper No. 2009-01-0982.
14.
Yin
,
Z.
,
Song
,
J.
, and
Jiang
,
S.
, 2004, “
A New Strategy for Direct Generation of Tool Shape From a CAD Model Based on a Meshless Method
,”
Int. J. Comput. Integr. Manuf.
0951-192X,
17
, pp.
327
338
.
15.
Mortenson
,
M.
, 1985,
Geometric Modeling
,
Wiley
,
New York
.
16.
Sederberg
,
T.
, and
Parry
,
S.
, 1986, “
Free-Form Deformation of Solid Geometric Models
,”
Comput. Graph.
0097-8930,
20
, pp.
151
160
.
17.
Kobayashi
,
S.
,
Oh
,
S.
, and
Altan
,
T.
, 1989,
Metal Forming and the Finite-Element Method
,
Oxford University Press
,
New York
.
18.
Saran
,
M. J.
,
Schedin
,
E.
,
Samuelsson
,
A.
,
Melander
,
A.
, and
Gustafsson
,
C.
, 1990, “
Numerical and Experimental Investigations of Deep Drawing of Metal Sheets
,”
ASME J. Eng. Ind.
0022-0817,
112
, pp.
272
277
.
19.
Chen
,
F. K.
, and
Chiang
,
B. H.
, 1998, “
Three-Dimensional Finite Element Analysis for the Stamping of a Motorcycle Oil Tank
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
, pp.
770
773
.
20.
Lin
,
G.
,
Li
,
J.
,
Hu
,
S. J.
, and
Cai
,
W.
, 2007, “
A Computational Response Surface Study of Three-Dimensional Aluminum Hemming Using Solid-to-Shell Mapping
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
, pp.
360
368
.
21.
Chung
,
K.
, and
Richmond
,
O.
, 1992, “
Ideal Forming I: Homogeneous Deformation With Minimum Plastic Work
,”
Int. J. Mech. Sci.
0020-7403,
34
, pp.
575
591
.
22.
Chung
,
K.
, and
Richmond
,
O.
, 1992, “
Ideal Forming II: Sheet Forming With Optimum Deformation
,”
Int. J. Mech. Sci.
0020-7403,
34
, pp.
617
633
.
23.
Chung
,
K.
, and
Richmond
,
O.
, 1994, “
Mechanics of Ideal Forming
,”
ASME J. Appl. Mech.
0021-8936,
61
, pp.
176
181
.
24.
Chung
,
K.
,
Barlat
,
F.
,
Brem
,
J. C.
,
Lege
,
D. J.
, and
Richmond
,
O.
, 1997, “
Blank Shape Design for a Planar Anisotropic Sheet Based on Ideal Forming Design Theory and FEM Analysis
,”
Int. J. Mech. Sci.
0020-7403,
39
(
1
), pp.
105
120
.
25.
Guo
,
Y. Q.
,
Batoz
,
J. L.
,
Detraux
,
J. M.
, and
Duroux
,
P.
, 1990, “
Finite Element Procedures for Strain Estimations of Sheet Metal Forming Parts
,”
Int. J. Numer. Methods Eng.
0029-5981,
30
(
8
), pp.
1385
1401
.
26.
Guo
,
Y. Q.
,
Batoz
,
J. L.
,
Naceur
,
H.
,
Bouabdallah
,
S.
,
Mercier
,
F.
, and
Barlet
,
O.
, 2000, “
Recent Developments on the Analysis and Optimum Design of Sheet Metal Forming Parts Using a Simplified Inverse Approach
,”
Comput. Struct.
0045-7949,
78
(
1–3
), pp.
133
148
.
27.
Naceur
,
H.
,
Guo
,
Y. Q.
, and
Batoz
,
J. L.
, 2004, “
Blank Optimization in Sheet Metal Forming Using an Evolutionary Algorithm
,”
J. Mater. Process. Technol.
0924-0136,
151
(
1–3
), pp.
183
191
.
28.
Sabourin
,
F.
,
Morestin
,
F.
, and
Brunet
,
M.
, 2004, “
Sheet Forming With a Specific Inverse Approach for a Further Springback Analysis
,”
AIP Conf. Proc.
0094-243X,
712
, pp.
832
837
.
29.
Lan
,
J.
,
Dong
,
X.
, and
Li
,
Z.
, 2005, “
Inverse Finite Element Approach and Its Application in Sheet Metal Forming
,”
J. Mater. Process. Technol.
0924-0136,
170
(
3
), pp.
624
631
.
30.
Ryou
,
H.
,
Chung
,
K.
,
Yoon
,
J. W.
,
Han
,
C. K.
,
Youn
,
J. R.
, and
Kang
,
T. J.
, 2005, “
Incorporation of Sheet-Forming Effects in Crash Simulations Using Ideal Forming Theory and Hybrid Membrane and Shell Method
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
1
), pp.
182
192
.
31.
Hughes
,
T.
, 2000,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover
,
New York
.
32.
Ventsel
,
E.
, and
Krauthammer
,
T.
, 2001,
Thin Plates and Shells: Theory, Analysis, and Applications
,
Dekker
,
New York
.
33.
Terzopoulos
,
D.
, 1986, “
Regularization of Inverse Visual Problems Involving Discontinuities
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
PAMI-8
(
4
), pp.
413
424
.
You do not currently have access to this content.