As the laser spot size in microscale laser shock peening is in the order of magnitude of several microns, the anisotropic response of grains will have a dominant influence on its mechanical behavior of the target material. Furthermore, conventional plasticity theory employed in previous studies needs to be re-examined due to the length scale effect. In the present work, the length scale effects in microscale laser shock peening have been investigated. The crystal lattice rotation underneath the shocked surface was determined via electron backscatter diffraction. From these measurements, the geometrically necessary dislocation (GND) density that the material contains has been estimated. The yield strength increment was then calculated from the GND distribution by using the Taylor model and integrated into each material point of the finite element method (FEM) simulation. Finite element simulations, based on single crystal plasticity, were performed for the process both with and without considering the GND hardening, and the comparison has been conducted.

1.
Zhang
,
W.
, and
Yao
,
Y. L.
, 2001, “
Micro-Scale Laser Shock Processing—Modeling, Testing, and Microstructure Characterization
,”
J. Manuf. Process.
1526-6125,
3
(
2
), pp.
128
143
.
2.
Chen
,
H.
,
Kysar
,
J.
, and
Yao
,
Y. L.
, 2004, “
Characterization of Plastic Deformation Induced by Micro Scale Laser Shock Peening
,”
ASME Trans. J. Appl. Mech.
0021-8936,
71
(
3
), pp.
713
723
.
3.
Ma
,
Q.
, and
Clarke
,
D. R.
, 1994, “
Size Dependent Hardness of Silver Single Crystals
,”
Acta Metall. Mater.
0956-7151,
42
(
5
), pp.
1673
1681
.
4.
Stolken
,
J. S.
, and
Evans
,
A. G.
, 1998, “
Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.
1359-6454,
46
, pp.
5109
5115
.
5.
Dai
,
H.
, and
Parks
,
D. M.
, 1997, “
Geometrically Necessary Dislocation Density and Scale-Dependent Crystal Plasticity
,”
Proceedings of Plasticity ’97: The Fifth International Symposium on Plasticity and Its Current Applications
,
A. S.
Khan
, ed.,
Neat Press
,
Juneau, Alaska
, pp.
17
18
.
6.
Arsenlis
,
A.
, and
Parks
,
D. M.
, 1999, “
Crystallographic Aspects of Geometrically-Necessary and Statistically-Stored Dislocation Density
,”
Acta Mater.
1359-6454,
47
(
5
), pp.
1597
1611
.
7.
Evers
,
L. P.
,
Parks
,
D. M.
,
Brekelmans
,
W. A. M.
, and
Geers
,
M. G. D.
, 2002, “
Crystal Plasticity Model With Enhanced Hardening by Geometrically Necessary Dislocation Accumulation
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
2403
2424
.
8.
Nye
,
J. F.
, 1953, “
Some Geometrical Relations in Dislocation Solids
,”
Acta Metall.
0001-6160,
1
, pp.
153
162
.
9.
Ashby
,
M. F.
, 1970, “
The Deformation of Plastically Non-Homogeneous Materials
,”
Philos. Mag.
1478-6435,
21
, pp.
399
424
.
10.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
, 1999, “
Mechanism-Based Strain Gradient Plasticity—I. Theory
,”
J. Mech. Phys. Solids
0022-5096,
47
(
6
), pp.
1239
1263
.
11.
Sun
,
S.
,
Adams
,
B. L.
, and
King
,
W. E.
, 2000, “
Observations of Lattice Curvature Near the Interface of a Deformed Aluminum Bicrystal
,”
Philos. Mag. A
0141-8610,
80
(
1
), pp.
9
25
.
12.
Kysar
,
J. W.
,
Gan
,
Y. X.
,
Morse
,
T. L.
,
Chen
,
X.
, and
Jones
,
M. E.
, 2007, “
High Strain Gradient Plasticity Associated With Wedge Indentation Into Face-Centered Cubic Single Crystal: Geometrically Necessary Dislocation Densities
,”
J. Mech. Phys. Solids
0022-5096,
55
, pp.
1554
1573
.
13.
Rice
,
J. R.
, 1973, “
Plane Strain Slip Line Theory for Anisotropic Rigid/Plastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
21
, pp.
63
74
.
14.
Asaro
,
R. J.
, 1983, “
Crystal Plasticity
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
921
934
.
15.
Huang
,
Y.
, 1991, “
A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program
,” Division of Applied Sciences, Mech Report No. 178.
16.
Kysar
,
J. W.
, 1997,
Addendum to Mech Report No. 178
, Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA.
17.
Kysar
,
J. W.
, 2001, “
Continuum Simulations of Directional Dependence of Crack Growth Along a Copper/Sapphire Bicrystal Interface. Part I: Experiments and Crystal Plasticity Background
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
1099
1128
.
18.
Kysar
,
J. W.
,
Gan
,
Y. X.
, and
Mendez-Arzuza
,
G.
, 2005, “
Cylindrical Void in a Rigid-Ideally Plastic Single Crystal. Part I: Anisotropic Slip Line Theory Solution for Face-Centered Cubic Crystals
,”
Int. J. Plast.
0749-6419,
21
, pp.
1481
1520
.
19.
Durst
,
K.
,
Backes
,
B.
, and
Goken
,
M.
, 2005, “
Indentation Size Effect in Metallic Materials: Correcting for the Size of the Plastic Zone
,”
Scr. Mater.
1359-6462,
52
(
11
), pp.
1093
1097
.
20.
Stelmashenko
,
N. A.
,
Walls
,
M. G.
,
Brown
,
L. M.
, and
Milman
,
Y. V.
, 1993, “
Microindentation on W and Mo Oriented Single Crystals: An STM Stud
,”
Acta Metall. Mater.
0956-7151,
41
, pp.
2855
2865
.
21.
Wang
,
Y.
,
Kysar
,
J. W.
, and
Yao
,
Y. L.
, 2008, “
Analytical Solution of Anisotropic Plastic Deformation Induced by Micro-Scale Laser Shock Peening
,”
Mech. Mater.
0167-6636,
40
, pp.
100
114
.
22.
Kalidindi
,
S. R.
,
Bronkhorst
,
C. A.
, and
Anand
,
L.
, 1992, “
Crystallographic Texture Evolution in Bulk Deformation Processing of FCC Metals
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
537
569
.
You do not currently have access to this content.