A general and efficient methodology has been developed to analyze dimensional variations of a welded assembly, taking into account of weld distortion. Weld distortion is generally probabilistic because of the random nature of welding parameters such as the welding speed, maximum welding temperature, ambient temperature, etc. The methodology is illustrated by a very simple example of two perpendicular plates fillet-welded to each other. Two steps comprise the methodology: establishment of a weld distortion database and tolerance analysis using the database. To establish the database, thermo-elastoplastic finite element analyses are conducted to compute the weld distortion for all combinations of discrete values of major welding parameters. In the second step of tolerance analysis, the weld distortion retrieved from the database is taken into account in addition to the dimensional tolerances of the parts. As a result of such an analysis, sensitivities of the assembly’s dimensional variations to the part tolerances and weld distortion are obtained, which could provide a guideline for improving dimensional quality of the assembly.

1.
Kim
,
I. S.
, and
Basu
,
A.
, 1998, “
A Mathematical Model of Heat Transfer and Fluid Flow in the Gas Metal Arc Welding Process
,”
J. Mater. Process. Technol.
0924-0136,
77
, pp.
17
24
.
2.
Jaidi
,
J.
, and
Dutta
,
P.
, 2001, “
Modeling of Transport Phenomena in a Gas Metal Arc Welding Process
,”
Numer. Heat Transfer, Part A
1040-7782,
40
(
5
), pp.
543
562
.
3.
Haidar
,
J.
, 1998, “
A Theoretical Model for Gas Metal Arc Welding and Gas Tungsten Arc Welding
,”
J. Appl. Phys.
0021-8979,
84
, pp.
3518
3529
.
4.
Tsao
,
K. C.
, and
Wu
,
C. S.
, 1988, “
Fluid Flow and Heat Transfer in GMA Weld Pools
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
67
, pp.
70s
75s
.
5.
Kumar
,
S.
, and
Bhaduri
,
S. C.
, 1994, “
Three-Dimensional Finite Element Modeling of Gas Metal-Arc Welding
,”
Metall. Mater. Trans. B
1073-5615,
25
, pp.
435
441
.
6.
Zhang
,
W.
, 2006, “
Numerical Modeling of Heat Transfer, Fluid Flow and Microstructural Evolution During Fusion Welding of Alloys
,”
Weld. World
0043-2288,
50
(
9–10
), pp.
12
22
.
7.
Hu
,
J.
, and
Tsai
,
H. L.
, 2007, “
Heat and Mass Transfer in Gas Metal Arc Welding—Part I: The Arc
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
833
846
.
8.
Hu
,
J.
, and
Tsai
,
H. L.
, 2007, “
Heat and Mass Transfer in Gas Metal Arc Welding—Part II: The Metal
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
808
820
.
9.
K.
Satoh
and
T.
Terasaki
, 1976, “
Effect of Welding Conditions on Welding Deformation in Welded Structural Materials
,”
J. Japan Welding Society
,
45
(
4
), pp.
302
308
.
10.
Ueda
,
Y.
, and
Yuan
,
M. G.
, 1993, “
Prediction of Residual Stresses in Butt Welded Plates Using Inherent Strains
,”
ASME J. Eng. Mater. Technol.
0094-4289,
115
, pp.
417
423
.
11.
Karlsson
,
R. I.
, and
Josefson
,
B. L.
, 1990, “
Three-Dimensional Finite Element Analysis of Temperatures and Stresses in a Single-Pass Butt Welded Pipe
,”
ASME J. Pressure Vessel Technol.
0094-9930,
112
, pp.
76
84
.
12.
Tekriwal
,
P.
, and
Mazumder
,
J.
, 1991, “
Transient and Residual Thermal Strain-Stress Analysis of GMAW
,”
ASME J. Eng. Mater. Technol.
0094-4289,
113
, pp.
336
343
.
13.
Kim
,
J. H.
, 2000, “
Simulation of GMAW Using 3-Dimensinal Thermo-Elasto-Plastic Analysis
,” MS thesis, Seoul National University, Seoul, Korea.
14.
Choi
,
J.
, and
Mazumder
,
J.
, 2002, “
Numerical and Experimental Analysis for Solidification and Residual Stress in the GMAW Process for AISI 302 Stainless Steel
,”
J. Mater. Sci.
0022-2461,
37
, pp.
2143
2158
.
15.
Chase
,
K. W.
, and
Parkinson
,
A. R.
, 1991, “
A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies
,”
Res. Eng. Des.
0934-9839,
3
, pp.
23
27
.
16.
Juster
,
N. P.
, 1992, “
Modelling and Representation of Dimensions and Tolerances: A Survey
,”
CAD
0010-4485,
24
(
1
), pp.
3
17
.
17.
Spotts
,
M. F.
, 1983,
Dimensioning and Tolerancing for Quantity Production
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
18.
Fortini
,
E.
, 1967,
Dimensioning for Interchangeable Manufacture
,
Industrial
,
New York
.
19.
Ceglarek
,
D.
,
Huang
,
W.
,
Zhou
,
S.
,
Ding
,
Y.
,
Kumar
,
R.
, and
Zhou
,
Y.
, 2004, “
Time-Based Competition in Multistage Manufacturing: Stream-of-Variation Analysis Methodology—Review
,”
Int. J. Flex. Manuf. Syst.
,
16
, pp.
11
14
. 0920-6299
20.
Hu
,
S. J.
, and
Wu
,
S. M.
, 1992, “
Identifying Sources of Variation in Automobile Body Assembly Using Principal Component Analysis
,”
Trans. NAMRI/SME
1047-3025,
20
, pp.
311
316
.
21.
Hsieh
,
C. C.
, and
Oh
,
K. P.
, 1997, “
A Framework for Modeling Variation in Vehicle Assembly Processes
,”
Int. J. Veh. Des.
0143-3369,
18
(
5
), pp.
466
473
.
22.
Liu
,
S. C.
, and
Hu
,
S. J.
, 1997, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
368
374
.
23.
R. F.
Webbink
,
A.
Bryan
,
K.
Iyer
,
S. J.
Hu
,
Y.
Gur
, and
R.
Koganti
, “
Compliant Assembly Variation Analysis of 3D Structures With Consideration of Weld Distortions
,” unpublished.
24.
Dimensional Control System
, 2003, 3DCS Analyst User’s Manual.
25.
Huang
,
W.
,
Ceglarek
,
D.
, and
Zhou
,
Z.
, 2004, “
Tolerance Analysis for Design of Multistage Manufacturing Processes Using Number-Theoretical Net Method
,”
Int. J. Flex. Manuf. Syst.
,
16
, pp.
65
90
. 0920-6299
You do not currently have access to this content.