An extension of the stress-based forming limit curve (FLC) advanced by Stoughton (2000, “A General Forming Limit Criterion for Sheet Metal Forming,” Int. J. Mech. Sci., 42, pp. 1–27) is presented in this work. With the as-received strain-based FLCs and stress-strain curves for 1.6-mm-thick AA5754 and 1-mm-thick AA5182 aluminum alloy, stress-based FLCs are obtained. These curves are then transformed into extended stress-based forming limit curves (XSFLCs), which consist of the invariants, effective stress, and mean stress. By way of application, stretch flange forming of these aluminum alloy sheets is considered. The AA5754 stretch flange displays a circumferential crack during failure, whereas the AA5182 stretch flange fails through a radial crack at the edge of the cutout. It is shown that the necking predictions obtained using the strain- and stress-based FLCs in conjunction with shell element computations are inconsistent when compared with the experimental results. By comparing the results of the shell element computations with those in which the mesh comprises eight-noded solid elements, it is demonstrated that the plane stress approximation is not valid. The XSFLC is then used with results from the solid-element computations to predict the punch depths at the onset of necking. Furthermore, it is shown that the predictions of failure location and failure mode obtained using the XSFLC are in accord with the differences observed between the two alloys/gauges.

1.
Keeler
,
S. P.
, and
Backofen
,
W. A.
, 1963, “
Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches
,”
ASM Trans. Q.
0097-3912,
56
, pp.
25
48
.
2.
Goodwin
,
G. M.
, 1968, “
Application of Strain Analysis to Sheet Metal Forming in the Press Shop
,” SAE Paper No. 680093.
3.
Graf
,
A.
, and
Hosford
,
W.
, 1993, “
Effect of Changing Strain Paths on Forming Limit Diagrams of Al 2008-T4
,”
Metall. Trans. A
0360-2133,
24A
, pp.
2503
2512
.
4.
Ghosh
,
A. K.
, and
Laukonis
,
J. V.
, 1976, “
The Influence of Strain Path Changes on the Formability of Sheet Steel
,”
Ninth Biennial Congress of the International Deep Drawing Research Group, Sheet Metal Forming and Energy Conservation
.
5.
Marin
,
J.
,
Hu
,
L. W.
, and
Hamburg
,
J. F.
, 1953, “
Plastic Stress Strain Relations of Alcoa 14S-T6 for Variable Biaxial Stress Ratios
,”
Trans. Am. Soc. Met.
0096-7416,
45
, pp.
686
709
.
6.
Embury
,
J. D.
, and
LeRoy
,
G. H.
, 1977, “
Failure Maps Applied to Metal Deformation Processes
,”
Advances in Research on the Strength and Fracture of Materials
,
Pergamon
,
New York
, pp.
15
42
.
7.
Arrieux
,
R.
,
Bedrin
,
C.
, and
Bovin
,
M.
, 1982, “
Determination of an Intrinsic Forming Limit Stress Diagram for Isotropic Sheets
,”
Proceedings of the 12th IDDRG Congress
, Vol.
2
, pp.
61
71
.
8.
Gronostajski
,
I.
, 1984, “
Sheet Metal Forming Limits for Complex Strain Paths
,”
J. Met. Work. Technol.
,
10
, pp.
349
362
.
9.
Arrieux
,
R.
, 1995, “
Determination and Use of the Forming Limit Stress Diagrams in Sheet Metal Forming
,”
J. Mater. Process. Technol.
0924-0136,
53
(
1–2
), pp.
47
56
.
10.
Stoughton
,
T. B.
, 2000, “
A General Forming Limit Criterion for Sheet Metal Forming
,”
Int. J. Mech. Sci.
0020-7403,
42
, pp.
1
27
.
11.
Stoughton
,
T. B.
, and
Zhu
,
X.
, 2004, “
Review of Theoretical Models of the Strain-Based FLD and Their Relevance to the Stress-Based FLD
,”
Int. J. Plast.
0749-6419,
20
(
8–9
), pp.
1463
1486
.
12.
Stoughton
,
T.
, and
Yoon
,
J.
, 2005, “
Sheet Metal Formability Analysis for Anisotropic Materials Under Non-Proportional Loading
,”
Int. J. Mech. Sci.
0020-7403,
47
(
12
), pp.
1972
2002
.
13.
Stoughton
,
T. B.
, 2001, “
Stress-Based Forming Limits in Sheet-Metal Forming
,”
ASME J. Eng. Mater. Technol.
0094-4289,
123
(
4
), pp.
417
422
.
14.
Gotoh
,
M.
,
Chung
,
C.
, and
Iwata
,
N.
, 1995, “
Effect of Out-of-Plane Stress on the Forming Limit Strain of Sheet Metals
,”
JSME Int. J.
,
38
(
1
), pp.
123
132
.
15.
Smith
,
L. M.
,
Averill
,
R. C.
,
Lucas
,
J. P.
,
Stoughton
,
T. B.
, and
Matin
,
P. H.
, 2003, “
Influence of Transverse Normal Stress on Sheet Metal Formability
,”
Int. J. Plast.
0749-6419,
19
(
10
), pp.
1567
1583
.
16.
Matin
,
P.
, and
Smith
,
L.
, 2005, “
Practical Limitations to the Influence of Through-Thickness Normal Stress on Sheet Metal Formability
,”
Int. J. Plast.
0749-6419,
21
(
4
), pp.
671
690
.
17.
Takuda
,
H.
,
Mori
,
K.
, and
Hatta
,
N.
, 1999, “
The Application of Some Criteria for Ductile Fracture to the Prediction of the Forming Limit of Sheet Metals
,”
J. Mater. Process. Technol.
0924-0136,
95
(
1–3
), pp.
116
121
.
18.
Smith
,
L. M.
,
Ganeshmurthy
,
S.
, and
Alladi
,
K.
, 2003, “
Double-Sided High-Pressure Tubular Hydroforming
,”
J. Mater. Process. Technol.
0924-0136,
142
(
3
), pp.
599
608
.
19.
Simha
,
C. H. M.
,
Gholipour
,
J.
,
Bardelcik
,
A.
, and
Worswick
,
M. J.
, 2007, “
Prediction of Necking in Tubular Hydroforming Using an Extended Stress-Based FLC
,”
ASME J. Eng. Mater. Technol.
0094-4289,
129
(
1
), pp.
36
47
.
20.
Cinotti
,
N. A.
, 2002, “
Stretch Flange Formability of Aluminum Alloy Sheet
,” MS thesis, Department of Mechanical Engineering, University of Waterloo.
21.
Chen
,
Z. T.
, 2004, “
The Role of Heterogeneous Particle Distribution in the Prediction of Ductile Fracture
,” Ph.D. thesis, Department of Mechanical Engineering, University of Waterloo.
22.
Chen
,
Z. T.
,
Worswick
,
M. J.
,
Cinotti
,
N.
,
Pilkey
,
A. K.
, and
Lloyd
,
D.
, 2003, “
A Linked FEM-Damage Percolation Model of Aluminum Alloy Sheet Forming
,”
Int. J. Plast.
0749-6419,
19
(
12
), pp.
2099
2120
.
23.
Chen
,
Z.
,
Worswick
,
M. J.
,
Pilkey
,
A. K.
, and
Lloyd
,
D. J.
, 2005, “
Damage Percolation During Stretch Flange Forming of Aluminum Alloy Sheet
,”
J. Mech. Phys. Solids
0022-5096,
53
(
12
), pp.
2692
2717
.
24.
Nine
,
H. D.
, 1978, “
Drawbead Forces in Sheet Metal Forming
,”
Mechanics of Sheet Metal Forming, Material Behavior and Deformation Analysis
, edited by
D. P.
Koistinen
and
N. M.
Wang
,
Plenum
,
New York
, pp.
179
207
.
25.
Sakash
,
A.
,
Moondra
,
S.
, and
Kinsey
,
B. L.
, 2006, “
Effect of Yield Criterion on Numerical Simulation Results Using a Stress-Based Failure Criterion
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
(
3
), pp.
436
444
.
26.
Simha
,
C. H. M.
,
Grantab
,
R.
, and
Worswick
,
M. J.
, 2007, “
Computational Analysis of Stress-Based Forming Limits
,”
Int. J. Solids Struct.
0020-7683,
44
(
25-26
), pp.
8663
8684
.
27.
Hallquist
,
J. O.
, 1998, LS-DYNA, Theoretical Manual, Livermore Software Technology Corporation.
28.
Wilkins
,
M. L.
, 1964, “
Calculation of Elastic-Plastic Flow
,”
Fundamental Methods in Hydrodynamics
,
Methods in Computational Physics
Vol.
3
,
Academic
,
New York
.
29.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
, 2000,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
30.
Belytschko
,
T.
,
Lin
,
J.
, and
Tsay
,
C. S.
, 1984, “
Explicit Algorithms for the Nonlinear Dynamics of Shells
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
42
, pp.
225
251
.
31.
Choi
,
Y.
,
Han
,
C.-S.
,
Lee
,
J. K.
, and
Wagoner
,
R. H.
, 2006, “
Modeling Multi-Axial Deformation of Planar Anisotropic Elasto-Plastic Materials. Part I: Theory
,”
Int. J. Plast.
0749-6419,
22
(
9
), pp.
1745
1764
.
32.
Yoon
,
J.-W.
,
Barlat
,
F.
,
Dick
,
R. E.
,
Chung
,
K.
, and
Kang
,
T. J.
, 2004, “
Plane Stress Yield Function for Aluminum Alloy Sheets. Part II: FE Formulation and Its Implementation
,”
Int. J. Plast.
0749-6419,
20
(
3
), pp.
495
522
.
33.
Tharrett
,
M. R.
, and
Stoughton
,
T. B.
, 2003, “
Stretch-Bend Forming Limits of 1008 AK Steel
,”
Advances in Forming and Modelling of Sheet Metals
,
SAE International
,
Warrendale, PA
, Technical Report No. 2003-01–1157.
34.
Levy
,
B. S.
, and
Green
,
D. E.
, 2002, “
The Enhanced FLC Effect
,” Auto/Steel Partnership, available online at http://www.asp.org/publications.htmhttp://www.asp.org/publications.htm
You do not currently have access to this content.