Abstract

High-speed machining offers several advantages such as increased flexibility and productivity for discrete-part manufacturing. However, excessive heat generation and resulting high temperatures on the tool and workpiece surfaces in high-speed machining leads to a shorter tool life and poor part quality, especially if the tool edge geometry and cutting conditions were not selected properly. In this study, analytical and thermal modeling of high-speed machining with chamfered tools in the presence of dead metal zone has been presented to investigate the effects of cutting conditions, heat generation, and resultant temperature distributions at the tool and in the workpiece. An analytical slip-line field model is utilized to investigate the process mechanics and friction at the tool-chip and tool-workpiece interfaces in the presence of the dead metal zone in machining with a negative rake chamfered polycrystalline cubic boron nitride tool. In order to identify friction conditions, a set of orthogonal cutting tests is performed on AISI 4340 steel and chip geometries and cutting forces are measured. Thermal modeling of machining with chamfered tools based on moving band heat source theory, which utilizes the identified friction conditions and stress distributions on the tool-chip and tool-workpiece interfaces, is also formulated and temperature distributions at the tool, cutting zone, and in the workpiece are obtained. These temperature distributions are compared with the results obtained from finite element simulations. The comparison of temperature fields indicates that the proposed model provides reasonable solutions to understand the mechanics of machining with chamfered tools. Models presented here can be further utilized to optimize the tool geometry and cutting conditions for increasing benefits that high-speed machining offers.

1.
Hitomi
,
K.
, 1961, “
Fundamental Machinability Research in Japan
,”
J. Eng. Ind.
0022-0817,
83
, pp.
531
544
.
2.
Kita
,
Y.
,
Ido
,
M.
, and
Kawasaki
,
N.
, 1982, “
A Study of Metal Flow Ahead of Tool Face with Large Negative Rake Angle
,”
J. Eng. Ind.
0022-0817,
104
, pp.
319
325
.
3.
Hirao
,
K.
,
Tlusty
,
R.
,
Sowerby
,
R.
, and
Chandra
,
G.
, 1982, “
Chip Formation with Chamfered Tools
,”
J. Eng. Ind.
0022-0817,
104
, pp.
339
342
.
4.
Jacobson
,
S.
, and
Wallen
,
P.
, 1988, “
A New Classification System for Dead Zones in Metal Cutting
,”
Int. J. Mach. Tools Manuf.
0890-6955,
28
, pp.
529
538
.
5.
Zhang
,
H. T.
,
Liu
,
P. D.
, and
Hu
,
R. S.
, 1991, “
A Three-Zone Model and Solution of Shear Angle in Orthogonal Machining
,”
Wear
0043-1648,
143
, pp.
29
43
.
6.
Ren
,
H.
, and
Altintas
,
M. R.
, 2000, “
Mechanics of Machining with Chamfered Tools
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
650
659
.
7.
Oxley
,
P. L. B.
, 1989,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood Limited
, UK.
8.
Movaheddy
,
M. R.
,
Altintas
,
Y.
, and
Gadala
,
M. S.
, 2002, “
Numerical Analysis of Metal Cutting With Chamfered and Blunt Tools
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
178
188
.
9.
Long
,
Y.
, and
Huang
,
Y.
, 2005, “
Force Modeling Under Dead Metal Zone Effect in Orthogonal Cutting with Chamfered Tools
,”
Trans. NAMRI/SME
1047-3025,
33
, pp.
573
580
.
10.
Fang
,
N.
, 2005, “
Tool-Chip Friction in Machining with a Large Negative Rake Angle Tool
,”
Wear
0043-1648,
258
, pp.
890
897
.
11.
Lee
,
E. H.
, and
Shaffer
,
B. W.
, 1951, “
The Theory of Plasticity Applied to a Problem of Machining
,”
ASME J. Appl. Mech.
0021-8936,
18
, pp.
405
413
.
12.
Fang
,
N.
, and
Wu
,
Q.
, 2005, “
The Effects of Chamfered and Honed Tool Edge Geometry in Machining of Three Aluminum Alloys
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
1178
1187
.
13.
Choudhury
,
I. A.
,
See
,
N. L.
, and
Zukhairi
,
M.
, 2005, “
Machining with Chamfered Tools
,”
J. Mater. Process. Technol.
0924-0136,
170
, pp.
115
120
.
14.
Zhou
,
J. M.
,
Walter
,
H.
,
Andersson
,
M.
, and
Stahl
,
J. E.
, 2003, “
Effect of Chamfer Angle on Wear of PCBN cutting tool
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
301
305
.
15.
Yen
,
Y. C.
,
Jain
,
A.
, and
Altan
,
T.
, 2004, “
A Finite Element Analysis of Orthogonal Machining Using Different Tool Edge Geometries
,”
J. Mater. Process. Technol.
0924-0136,
146
, pp.
72
81
.
16.
Karpat
,
Y.
, and
Özel
,
T.
, 2006, “
Predictive Analytical and Thermal Modeling of Orthogonal Cutting Process. Part I: Predictions of Tool Forces, Stresses and Temperature Distributions
,”
ASME J. Manuf. Sci. Eng.
1087-1357
128
(
2
), pp.
435
444
.
17.
Karpat
,
Y.
, and
Özel
,
T.
, 2006, “
Predictive Analytical and Thermal Modeling of Orthogonal Cutting Process. Part II: Effect of Tool Flank Wear On Tool Forces, Stresses and Temperature Distributions
,”
ASME J. Manuf. Sci. Eng.
1087-1357
128
(
2
), pp.
445
453
.
18.
Karpat
,
Y.
, and
Özel
,
T.
, 2006, “
An Integrated Analytical Thermal Model for Orthogonal Cutting with Chamfered Tools
,”
Trans. NAMRI/SME
1047-3025,
34
, pp.
9
16
.
19.
Hahn
,
R. S.
, 1951, “
On the Temperature Developed at the Shear Plane in the Metal Cutting Process
,”
Proceedings 1st US National Congress of Applied Mechanics
, pp.
661
666
.
20.
Jaeger
,
J. C.
, 1942, “
Moving Sources of Heat and the Temperatures at Sliding Contacts
,”
J. Proc. R. Soc. N. S. W.
0035-9173,
76
, pp.
203
224
.
21.
Komanduri
,
R.
, and
Hou
,
Z. B.
, 2000, “
Thermal Modeling of Metal Cutting Process—Part I
,”
Int. J. Mech. Sci.
0020-7403,
42
, pp.
1715
1752
.
22.
Komanduri
,
R.
, and
Hou
,
Z. B.
, 2001, “
Thermal Modeling of Metal Cutting Process—Part II
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
57
88
.
23.
Komanduri
,
R.
, and
Hou
,
Z. B.
, 2001, “
Thermal Modeling of Metal Cutting Process—Part III
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
89
107
.
24.
Ernst
,
H.
, and
Merchant
,
M. E.
, 1941, “
Chip Formation, Friction and High Quality Machined Surfaces
,”
Trans. ASME
0097-6822,
29
, pp.
229
378
.
25.
Kudo
,
H.
, 1965, “
Some New Slip Line Solutions for Two Dimensional Steady State
,”
Int. J. Mech. Sci.
0020-7403,
7
, pp.
43
55
.
26.
Shi
,
T.
, and
Ramalingam
,
S.
, 1991, “
Slip Line Solution for Orthogonal Cutting with a Chip Breaker and Flank Wear
,”
Int. J. Mech. Sci.
0020-7403,
33
(
9
), pp.
689
704
.
27.
Thomsen
,
E. G.
,
McDonald
,
A. G.
, and
Kobayashi
,
S.
, 1962 “
Flank Friction Studies with Carbide Tools Reveal Sub-Layer Plastic Flow
,”
J. Eng. Ind.
0022-0817
84
, pp.
53
62
.
28.
Abebe
,
M.
, and
Appl
,
F. C.
, 1981 “
A Slip Line Solution For Negative Rake Angle Cutting
,”
Trans. NAMRI/SME
1047-3025,
19
, pp.
341
348
.
29.
Waldorf
,
D. J.
, 1996, “
Shearing, Ploughing and Wear in Orthogonal Machining
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL, 1996.
30.
Fang
,
N.
,
Jawahir
,
I. S.
, and
Oxley
,
P. L. B.
, 2001, “
A Universal Slip-Line Model with Non-Unique Solutions for Machining with Curled Chip Formation and a Restricted Contact Tool
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
557
580
.
31.
Fang
,
N.
, and
Jawahir
,
I. S.
, 2002, “
An Analytical Predictive Model and Experimental Validation for Machining with Grooved Tools Incorporating the Effects of Strains, Strain-Rates, and Temperatures
,”
CIRP Ann.
0007-8506,
51
, pp.
83
86
.
32.
Childs
,
T. H. C.
,
Maekawa
,
K.
,
Obikawa
,
T.
, and
Yamane
,
Y.
, 2000,
Metal Machining Theory and Applications
,
Butterworth-Heinemann
,
London, UK
.
33.
Childs
,
T. H. C.
, 2006, “
Numerical Experiments on the Influence of Material and Other Variables on Plane Strain Continuous Chip Formation in Metal Machining
,”
Int. J. Mech. Sci.
0020-7403,
48
, pp.
307
322
.
34.
Carlslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
Oxford University Press
,
Oxford, UK
.
35.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
,
The Hague, The Netherlands
, pp.
541
547
.
36.
Gray
,
G. T.
,
Chen
,
S. R.
,
Wright
,
W.
, and
Lopez
,
M. F.
, 1994 “
Constitutive Equations for Annealed Metals under Compression at High Strain Rates and High Temperatures
,” Los Alamos National Laboratory Report No. LA-12699-MS.
37.
Cockroft
,
M. G.
, and
Latham
,
D. J.
, 1966, A Simple Criterion of Fracture for Ductile Metals, National Engineering Laboratory, Report No. 216.
You do not currently have access to this content.