Traditional statistical process control (SPC) has been widely employed for the process monitoring in discrete part manufacturing. However, SPC does not consider any adjustment preventing the process drift. Furthermore, many in-line adjustment approaches, such as thermal error compensation and avoidance, are designed only for machine tool error reduction. This paper intends to fully utilize the engineering process information and to propose an alternative compensation strategy based on equivalent fixture error (EFE) concept that could reduce overall effect of the process errors. Considering three types of error sources in a machining process, we propose to adjust fixture locators to compensate errors using the EFE model. The dynamic property of EFE is investigated for the feedback adjustment of both static and quasi-static errors in machining processes. A minimum-mean-square-error controller is designed based on the dynamic EFE model. We then evaluate the performance of the controller such as stability and sensitivity. A self-updating algorithm for the controller will track the latest process information to stabilize the controller output. Finally, we simulate this process adjustment using the data collected from a real machining process. The results show that this algorithm can improve the machining quality.

1.
Box
,
G. E. P.
, 1957, “
Evolutionary Operation: A Method for Increasing Industrial Productivity
,”
Appl. Stat.
0285-0370,
6
, pp.
81
101
.
2.
Box
,
G. E. P.
, and
Jenkins
,
G. M.
, 1963, “
Further Contributions to Adaptive Quality Control: Simultaneous Estimation of Dynamics: Non-Zero Costs
,”
Bulletin of the International Statistics Institute, 34th Session, Ottawa
, pp.
943
974
.
3.
Box
,
G. E. P.
, and
Kramer
,
T.
, 1992, “
Statistical Process Monitoring and Feedback Adjustment— A Discussion
,”
Technometrics
0040-1706,
34
, pp.
251
285
.
4.
Ulsoy
,
A. G.
, and
Koren
,
Y.
, 1993, “
Control of Machining Processes
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
115
, pp.
301
308
.
5.
Liang
,
S. Y.
,
Hecker
,
R. L.
, and
Landers
,
R. G.
, 2004, “
Machining Process Monitoring and Control: The State-of-the-Art
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
297
310
.
6.
Chen
,
J. S.
,
Yuan
,
J. X.
,
Ni
,
J.
, and
Wu.
,
S. M.
, 1993, “
Real-Time Compensation for Time-Variant Volumetric Errors on a Machining Center
,”
ASME J. Eng. Ind.
0022-0817,
115
, pp.
472
479
.
7.
Yang
,
H.
, and
Ni
,
J.
, 2003, “
Dynamic Modeling for Machine Tool Thermal Error Compensation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
245
254
.
8.
Donmez
,
M. A.
,
Blomquist
,
D. S.
,
Hocken
,
R. J.
,
Liu
,
C. R.
, and
Barash
,
M. M.
, 1986, “
A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation
,”
Precis. Eng.
0141-6359,
8
, pp.
187
196
.
9.
Mou
,
J.
,
Donmez
,
M. A.
, and
Centinkunt
,
S.
, 1995, “
An Adaptive Error Correction Method Using Feature-Based Analysis Techniques for Machine Performance Improvement, Part 1: Theory Derivation, & Part 2: Experimental Verification
,”
ASME J. Eng. Ind.
0022-0817,
117
, pp.
584
600
.
10.
Wang
,
H.
,
Huang
,
Q.
, and
Katz
,
R.
, 2005, “
Multi-Operational Machining Processes Modeling for Sequential Root Cause Identification and Measurement Reduction
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
, pp.
512
521
.
11.
Wang
,
H.
, and
Huang
,
Q.
, 2006, “
Error Cancellation Modeling and Its Application in Machining Process Control
,”
IIE Trans., Qual. Reliab. Eng.
1545-8830,
38
, pp.
379
388
.
12.
Huang
,
Q.
,
Shi
,
J.
, and
Yuan
,
J.
, 2003, “
Part Dimensional Error and its Propagation Modeling in Multi-Operational Machining Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
255
262
.
13.
Djurdjanovic
,
D.
, and
Ni
,
J.
, 2001, “
Linear State Space Modeling of Dimensional Machining Errors
,”
Trans. NAMRI/SME
1047-3025,
29
, pp.
541
548
.
14.
Zhou
,
S.
,
Huang
,
Q.
, and
Shi
,
J.
, 2003, “
State Space Modeling of Dimensional Variation Propagation in Multistage Machining Process Using Differential Motion Vectors
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
, pp.
296
309
.
15.
Shi
,
R.
, and
MacGregor
,
J. F.
, 2000, “
Modeling of Dynamic Systems Using Latent Variable and Subspace Methods
,”
J. Chemom.
0886-9383,
14
, pp.
423
439
.
16.
Box
,
G. E. P.
, and
Jenkins
,
G. M.
, 1970,
Time Series Analysis Forecasting and Control
,
Holden-Day
,
Oakland, CA
.
17.
Astrom
,
K. J.
, 1970,
Introduction to Stochastic Control Theory
,
Academic Press
,
New York
.
18.
MacGregor
,
J. F.
, 1988, “
Online-Line Statistical Process Control
,”
Chem. Eng. Process.
0255-2701,
10
, pp.
21
31
.
19.
English
,
J. R.
, and
Case
,
K. E.
, 1990, “
Control Charts Applied as Filtering Devices Within a Feedback Loop
,”
IIE Trans.
0740-817X,
26
, pp.
255
269
.
20.
Del
Castillo
,
E.
, 1996, “
A Multivariate Self-tuning Controller for Run-to-Run Process Control Under Shift and Trend Disturbances
,”
IIE Trans.
0740-817X,
28
, pp.
22
28
.
21.
Vander Wiel
,
S. A.
,
Tucker
,
W. T.
,
Faltin
,
F. W.
, and
Doganaksoy
,
N.
, 1992, “
Algorithmic Statistical Process Control: Concepts and Application
,”
Technometrics
0040-1706,
34
, pp.
286
297
.
22.
Tucker
,
W. T.
,
Faltin
,
F. W.
, and Vander
Wiel
,
S. A.
, 1993, “
Algorithmic Statistical Process Control: An Elaboration
,”
Technometrics
0040-1706,
35
, pp.
363
375
.
23.
Capilla
,
C.
,
Ferrer
,
A.
, and
Romero
,
R.
, 1999, “
Integration of Statistical and Engineering Process Control in a Continuous Polymerization Process
,”
Technometrics
0040-1706,
41
, pp.
14
28
.
You do not currently have access to this content.