The recent advancement of 3D non-contact laser scanners enables fast measurement of parts by generating a huge amount of coordinate data for a large surface area in a short time. In contrast, traditional tactile probes in the coordinate measurement machines can generate more accurate coordinate data points at a much slower pace. Therefore, the combination of laser scanners and touch probes can potentially lead to more accurate, faster, and denser measurements. In this paper, we develop a dynamic sensing-and-modeling approach for integrating a tactile point sensor and an area laser scanner to improve the measurement speed and quality. A part is first laser scanned to capture its overall shape. It is then probed via a tactile sensor where the probing positions are dynamically determined to reduce the measurement uncertainty based on a novel next-best-point formulation. Technically, we use the Kalman filter to fuse laser-scanned point cloud and tactile points and to incrementally update the surface model based on the dynamically probed points. We solve the next-best-point problem by transforming the B-spline surface’s uncertainty distribution into a higher dimensional uncertainty surface so that the convex hull property of the B-spline surface can be utilized to dramatically reduce the search speed and to guarantee the optimality of the resulting point. Three examples in this paper demonstrate that the dynamic sensing-and-modeling effectively integrates the area laser scanner and the point touch probe and leads to a significant amount of measurement time saving (at least several times faster in all three cases). This dynamic approach’s further benefits include reducing surface uncertainty due to the maximum uncertainty control through the next-best-point sensing and improving surface accuracy in surface reconstruction through the use of Kalman filter to account various sensor noise.

1.
NVision’s model maker3D scanner provides worldwide savings for NISSAN, See http://www.nvision3d.com/CaseStudies/Nissan.htmlhttp://www.nvision3d.com/CaseStudies/Nissan.html
3.
Qian
,
X.
, and
Harding
,
K. G.
, 2003, “
Partitioning Positional and Normal Space for Fast Occlusion Detection
,”
ASME Design Engineering Technical Conferences
,
Chicago
,
IL
, September.
4.
Tarabanis
,
K. A.
,
Allen
,
P. K.
, and
Tasi
,
R. Y.
, 1995, “
A Survey of Sensor Planning in Computer Vision
,”
IEEE Trans. Rob. Autom.
1042-296X,
(11)
(
1
), pp.
86
104
.
5.
Maver
,
J.
, and
Bajcsy
,
R.
, 1993, “
Occlusions as a Guide for Planning the Next View
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
15
(
5
):
417
433
.
6.
Pito
,
R
, and
Bajcsy
,
R
, 1995, “
A Solution to the Next Best View Problem for Automated CAD Model Acquisition of Free-Form Objects Using Range Cameras
,”
Proc. SPIE
0277-786X,
2598
, pp.
78
89
.
7.
Qian
,
X.
, and
Harding
,
K. G.
, 2003, “
A Computational Approach for Optimal Sensor Setup
,”
J. Soc. Photo-Opt. Instrum. Eng.
,
42
(
5
), pp.
1238
1248
.
8.
Whaite
,
P.
, and
Ferrie
,
F. P.
, 1997, “
Autonomous Exploration: Driven by Uncertainty
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
19
(
3
), pp.
193
205
.
9.
Li
,
Y. F.
, and
Liu
,
Z. G.
, 2003, “
Uncertainty-Driven Viewpoint Planning for 3D Object Measurements
,”
Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan
, September 14–19.
10.
Elmaraghy
,
H.
, and
Gu
,
P.
, 1987, “
Expert System for Inspection Planning
,”
CIRP Ann.
0007-8506,
36
, pp.
85
89
.
11.
Spyridi
,
A. J.
, 1994, “
Automatic Generation of High Level Inspection Plans for Coordinate Measuring Machines
,” Ph.D. Dissertation, University of Southern California.
12.
Vafaeesefat
,
A.
, and
Elmaraghy
,
H.
, 2000, “
Automated Accessibility Analysis and Measurement Clustering for CMMs
,”
Int. J. Prod. Res.
0020-7543,
38
, pp.
2215
2231
.
13.
Kurfess
,
T. R.
, and
Banks
,
D. L.
, 1995, “
Statistical Verification of Conformance to Geometric Tolerance
,”
CAD
0010-4485,
27
(
5
), pp.
353
361
.
14.
Menq
,
C.
,
Yau
,
H.
, and
Lai
,
G.
, 1992, “
An Intelligent Planning Environment for Automated Dimensional Inspection Using Coordinate Measuring Machines
,”
ASME J. Eng. Ind.
0022-0817,
114
, pp.
222
230
.
15.
Li
,
Y. F.
, and
Liu
,
Z. G.
, 2003, “
Method for Determining the Probing Points for Efficient Measurement and Reconstruction of Freeform Surfaces
,”
Meas. Sci. Technol.
0957-0233,
12
, pp.
1280
1288
.
16.
Elkott
,
D. F.
,
Elmaraghy
,
H. A.
, and
Elmaraghy
,
W. H.
, 2002, “
Automatic Sampling for CMM Inspection Planning of Free-Form Surfaces
,”
Int. J. Prod. Res.
0020-7543,
40
(
11
), pp.
2653
2676
.
17.
Chen
,
L. C.
, and
Lin
,
G. C.
, 1997, “
A Vision-Aided Reverse Engineering Approach to Reconstructing Free-Form Surfaces
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
13
(
4
), pp.
323
336
.
18.
Motavalli
,
S.
,
Suharitdamrong
,
V.
, and
Alradhdan
,
A.
, 1998, “
Design Model Generation for Reverse Engineering Using Multisensors
,”
IIE Trans.
0740-817X,
30
, pp.
357
366
.
19.
Nashman
,
M.
, 1993, “
Vision and Touch Sensors for Dimensional Inspection
,”
Manuf. Rev.
0896-1611,
6
(
2
), pp.
155
162
.
20.
Shen
,
T. S.
,
Huang
,
J.
, and
Menq
,
C. H.
, 2000, “
Multiple-Sensor Integration for Rapid and High-Precision Coordinate Metrology
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
5
(
2
), pp.
110
121
.
21.
Shen
,
T.
,
Huang
,
J.
, and
Menq
,
C. H.
, 2001, “
Multiple Sensor Planning and Information Integration for Automated Coordinate Metrology
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
1
(
2
), pp.
167
179
.
22.
Szeliski
,
R.
, 1991, “
Probabilistic Modeling of Surfaces
,”
Proc. SPIE
0277-786X,
1570
, pp.
154
165
.
23.
Wang
,
Y. F.
, and
Wang
,
J. F.
, 1994, “
On 3D Model Construction by Fusing Heterogeneous Sensor Data
,”
CVGIP: Graph. Models Image Process.
1049-9652,
60
(
2
), pp.
210
229
.
24.
Wang
,
Y. F.
, 1991, “
A New Method for Sensor Data Fusion in Machine Vision
,”
Proc. SPIE
0277-786X,
1570
, pp.
31
42
.
25.
Van Pabst
,
J. V. L.
, and
Kreke
,
P. F. C.
, 1993, “
Multi-Sensor Data Fusion of Points, Line Segments and Surface Segments in 3D Space
,”
Proc. SPIE
0277-786X,
2059
, pp.
190
201
.
26.
Huang
,
Y.
, and
Qian
,
X.
, 2006, “
A Stochastic Approach to Surface Reconstruction
,”
Proceedings of IDETC/CIE 2006, ASME 2006 International Design Engineering Technical Conference & Computers and Information in Engineering Conference, Philadelphia, PA, September 10–13
.
27.
Zhang
,
Z.
, 1995, “
Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting
,” Research Report No. 2676, INRIA.
28.
Kalman
,
R. E.
, 1960, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
0021-9223,
82
, pp.
35
45
.
29.
Welch
,
G.
, and
Bishop
,
G.
, 2004, “
An Introduction to the Kalman Filter
,” http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdfhttp://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
30.
Thacher
,
N. A.
, and
Lacey
,
A. J.
, 1996, “
Tutorial: The Kalman Filter
,” http://www.tina-vision.net/docs/memos/1996-002.pdfhttp://www.tina-vision.net/docs/memos/1996-002.pdf
31.
Maybeck
,
P.
, 1979,
Stochastic Models, Estimation, and Control
,
Academic Press, Inc
,
New York
, Vol.
1
.
32.
Wang
,
M. Y.
, and
Pelinescu
,
D.
, 2001, “
Optimizing Fixture Layout in a Point Set Domain
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
3
), pp.
312
323
.
33.
Piegl
,
L.
, and
Tiller
,
W.
1995,
The NURBS Book
,
Springer
,
New York
.
34.
Ridler
,
T. W.
, and
Calvard
,
S.
, 1978, “
Picture Thresholding Using an Iterative Selection Method
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
8
, pp.
630
632
.
35.
Yau
,
H. T.
, 1998, “
Uncertainty Analysis in Geometric Best Fit
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
, pp.
1323
1342
.
36.
Li
,
Y. D.
, and
Gu
,
P. H.
, 2004, “
Free-Form Surface Inspection Techniques State of the Art Review
,”
CAD
0010-4485,
36
(
13
), pp.
1395
1417
.
You do not currently have access to this content.