Experiments were done to determine conditions under which vertical columns could be built by metal droplets landing sequentially on top of each other. Molten tin droplets (0.6mm diameter) were deposited using a pneumatic droplet generator on an aluminum substrate. The primary parameters varied in experiments were those found to most affect bonding between droplets: droplet temperature (250-345°C), substrate temperature (60-200°C), and deposition rate (1-15Hz). At lower deposition rates the substrate cooled down too much to induce remelting whereas at higher rates the tip of the column remained liquid and surface tension forces pulled it into a spherical mass. Assuming one-dimensional conductive heat transfer in a column a simple analytical model was developed to calculate the temperature at the tips of the column. It predicts that deposition frequency should be decreased as column height increases to hold the tip temperature constant. Droplet coalescence was best achieved when the tip temperature of a column was maintained at the melting point of the metal. Columns fabricated following the deposition frequency predicted by the model show good bonding between droplets and uniform diameter.

1.
Ashley
,
S.
, 1995, “
Rapid Prototyping is Coming of Age
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
117
, pp.
62
68
.
2.
Hopkinson
,
N.
, and
Dickens
,
P.
, 2001, “
Rapid Prototyping for Direct Manufacture
,”
Rapid Prototyping J.
1355-2546,
7
, pp.
197
202
.
3.
Gao
,
F.
, and
Sonin
,
A.
, 1994, “
Precise Deposition of Molten Microdrops: the Physics of Digital Microfabrication
,”
Proc. R. Soc. London, Ser. A
1364-5021,
144
(
1922
), pp.
533
553
.
4.
Chang
,
S.
,
Attinger
,
D.
,
Chiang
,
F. P.
,
Zhao
,
Y.
, and
Patel
,
R. C.
, 2004, “
SIEM Measurements of Ultimate Tensile Strength and Tensile Modulus of Jetted, UV-Cured Epoxy Resin Microsamples
,”
Rapid Prototyping J.
1355-2546,
10
, pp.
193
198
.
5.
Sui
,
G.
,
Leu
, and
M. C.
, 2003, “
Investigation of Layer Thickness and Surface Roughness in Rapid Freeze Prototyping
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
556
563
.
6.
Sui
,
G.
,
Leu
, and
M. C.
, 2003, “
Thermal Analysis of Ice Walls Built by Rapid Freeze Prototyping
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
824
834
.
7.
Amon
,
C. H.
,
Schmaltz
,
K. S.
, and
Prinz
,
F. B.
, 1996, “
Numerical and Experimental Investigation of Interface Bonding via Substrate Remelting of an Impinging Molten Metal Droplet
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
164
172
.
8.
Orme
,
M.
, and
Huang
,
C.
, 1997, “
Phase Change Manipulation for Droplet-Based Solid Freeform Fabrication
,”
ASME J. Heat Transfer
0022-1481,
119
, pp.
818
823
.
9.
Tseng
,
A. A.
,
Lee
,
M. H.
, and
Zhao
,
B.
, 2001, “
Design and Operation of a Droplet Deposition System for Freeform Fabrication of Metal Parts
,”
ASME J. Eng. Mater. Technol.
0094-4289,
123
, pp.
74
84
.
10.
Haferl
,
S.
, and
Poulikakos
,
D.
, 2002, “
Transport and Solidification Phenomena in Molten Microdroplet Pileup
,”
J. Appl. Phys.
0021-8979,
92
(
3
), pp.
1675
1689
.
11.
Haferl
,
S.
, and
Poulikakos
,
D.
, 2003, “
Experimental Investigation of the Transient Impact Fluid Dynamics and Solidification of a Molten Microdroplet Pile-Up
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
535
550
.
12.
Cheng
,
S. X.
,
Li
,
T.
, and
Chandra
,
S.
, 2005, “
Producing Molten Metal Droplets with a Pneumatic Droplet-on-Demand Generator
,”
J. Mater. Process. Technol.
0924-0136,
159
, pp.
295
302
.
13.
Yim
,
P.
, 1996, “
The Role of Surface Oxidation in the Break-Up of Laminar Liquid Metal Jets
,” Ph.D. thesis, MIT.
14.
Xiong
,
B.
,
Megaridis
,
C. M.
,
Poulikakos
,
D.
, and
Hoang
,
H.
, 1998, “
An Investigation of Key Factors Affecting Solder Microdroplet Deposition
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
259
270
.
15.
Loulou
,
T.
,
Artyukhin
,
E. A.
, and
Bardon
,
J. P.
, 1999, “
Estimation of Thermal Contact Resistance During the First Stages of Metal Solidification Process: II—Experimental Setup and Results
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
2129
2142
.
16.
Aziz
,
S. D.
, and
Chandra
,
S.
, 2000, “
Impact, Recoil and Splashing of Molten Metal Droplets
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2841
2857
.
17.
Dhiman
,
R.
, and
Chandra
,
S.
, 2005, “
Freezing-Induced Splashing During Impact of Molten Metal Droplets with High Weber Numbers
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5625
5638
.
18.
Pasandideh-Fard
,
M.
,
Qiao
,
Y. M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
, 1996, “
Capillary Effects During Droplet Impact on a Solid Surface
,”
Phys. Fluids
1070-6631,
8
, pp.
650
659
.
You do not currently have access to this content.