In warm forming of aluminum sheet materials, determination, realization, and maintenance of optimal temperature gradient is a key process parameter for increased formability. In this study, a two-phase procedure for efficient and accurate determination of proper temperature condition for warm forming of aluminum sheet metal blanks is presented using a hybrid 3D isothermal/non-isothermal finite element analysis (FEA) and design of experiments (DOE) approach. First, the relative trend, priority and overall temperature ranges of aluminum sheet metal blank regions are obtained using isothermal FE modeling and DOE techniques to reduce the analysis time significantly. In this phase, different temperature levels were assigned onto different regions of the deforming blank material (i.e., holding region, corner region, etc.). Heat transfer with the tooling and environment during the deformation process is ignored in order to achieve rapid predictions. Second, few additional non-isothermal FEAs, taking heat transfer into account, are conducted to validate and to refine the warm forming conditions based on the results from the isothermal FEA/DOE analysis. The proposed hybrid methodology offers rapid and relatively accurate design of warm forming process, especially for large parts that require 3D FE analysis. In addition, effects of forming speed (v), friction (μ), and blank holder pressure on formability are investigated. Increasing part formability is observed with decreasing punch speed and blank holder pressure while an optimal process window is found in case of varying friction coefficients.

1.
Mildenberger
,
U.
, and
Khare
,
A.
, 2000, “
Planning for an Environment-Friendly Car
,”
Technovation
0166-4972,
20
, pp.
205
214
.
2.
Taub
,
A.
, 2002, “
Automotive Materials—Technical Trends and Challenges
,”
Management Briefing Seminars
,
Traverse City
, MI.
3.
Schultz
,
R. A.
, 1999, “
Aluminum for Light Vehicles—an Objective Look at the Next Ten to Twenty Years
,” presented at the
Metal Bulletin International Aluminum Conference
, September 15,
Montreal, Canada
.
4.
Shehata
,
F.
,
Painter
,
M. J.
, and
Pearce
,
R.
, 1978, “
Warm Forming of Aluminum/Magnesium Alloy Sheet
,”
J. Mech. Work. Technol.
0378-3804,
2
, pp.
279
290
.
5.
Takata
,
K.
,
Ohwue
,
T.
,
Saga
,
M.
, and
Kikuchi
,
M.
, 2000, “
Formability of Al–Mg Alloys at Warm Temperature
,”
Mater. Sci. Forum
0255-5476,
331–337
, pp.
631
636
.
6.
Doege
,
E.
, and
Droder
,
K.
, 2001, “
Sheet Metal Forming of Magnesium Wrought Alloys—Formability and Process Technology
,”
J. Mater. Process. Technol.
0924-0136,
115
, pp.
14
19
.
7.
Li
,
D.
, and
Ghosh
,
A.
, 2004, “
Biaxial Warm Forming Behavior of Aluminum Sheet Alloys
,”
J. Mater. Process. Technol.
0924-0136,
145
, pp.
281
293
.
8.
Ayres
,
R. A.
, 1979, “
Alloying Aluminum With Magnesium for Ductility at Warm Temperatures (25-250°C)
,”
Metall. Trans. A
0360-2133,
10A
, pp.
849
854
.
9.
Li
,
D.
, and
Ghosh
,
A.
, 2003, “
Tensile Deformation Behavior of Aluminum Alloys at Warm Forming Temperature
,”
Mater. Sci. Eng., A
0921-5093,
352
, pp.
279
286
.
10.
Naka
,
T.
, and
Yoshida
,
F.
, 1999, “
Deep Drawability of Type 5083 Aluminum-Magnesium Alloy Sheet Under Various Conditions of Temperature and Forming Speed
,”
J. Mater. Process. Technol.
0924-0136,
89–90
, pp.
19
23
.
11.
Bolt
,
P. J.
,
Lamboo
,
N. A. P. M.
, and
Roizier
,
P. J. C. M.
, 2001, “
Feasibility of Warm Drawing of Aluminum Products
,”
J. Mater. Process. Technol.
0924-0136,
115
, pp.
118
121
.
12.
Moon
,
Y. H.
,
Kang
,
Y. K.
,
Park
,
J. W.
, and
Gong
,
S. R.
, 2001, “
Tool Temperature Control to Increase the Deep Drawability of Aluminum 1050 sheet
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
, pp.
1283
1294
.
13.
Szacinski
,
A. M.
, and
Thomson
,
P. F.
, 1991, “
Wrinkling Behavior of Aluminum Sheet During Forming at Elevated Temperature
,”
Mater. Sci. Technol.
0267-0836,
7
, pp.
37
41
.
14.
Sugamata
,
M.
,
Kaneko
,
J.
,
Usagawa
,
H.
, and
Suzuki
,
M.
, 1987, “
Effect of Forming Temperature on Deep Drawability of Aluminum Alloy Sheets
,”
Adv. Technol. Plasticity
, pp.
1275
1281
.
15.
Naka
,
T.
,
Hino
,
R.
, and
Yoshida
,
F.
, 2000, “
Deep Drawability of 5083 Al–Mg Alloy Sheet at Elevated Temperature and its Prediction
,”
Key Eng. Mater.
1013-9826,
177–180
, pp.
485
490
.
16.
Takuda
,
H.
,
Mori
,
K.
,
Masuda
,
I.
,
Abe
,
Y.
, and
Matsuo
,
M.
, 2002, “
Finite Element Simulation of Warm Deep Drawing of Aluminum Alloy Sheet When Accounting for Heat Conduction
,”
J. Mater. Process. Technol.
0924-0136,
120
, pp.
412
418
.
17.
Palaniswamy
,
H.
,
Ngaile
,
G.
, and
Altan
,
T.
, 2004, “
Finite Element Simulation of Magnesium Alloy Sheet Forming at Elevated Temperatures
,”
J. Mater. Process. Technol.
0924-0136,
146
, pp.
52
60
.
18.
Kim
,
H. S.
,
Koç
,
M.
, and
Ni
,
J.
, 2004, “
Determination of Appropriate Temperature Distribution for Warm Forming of Aluminum Alloys
,”
Trans. NAMRC/SME
, pp.
573
580
.
19.
Chung
,
S. H.
, and
Hwang
,
S. M.
, 1998, “
Optimal Process Design in Non-Isothermal, Non-Steady Metal Forming by the Finite Element Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
42
, pp.
1343
1390
.
20.
Fourment
,
L.
, and
Chenot
,
J. L.
, 1996, “
Optimal Design for Non-Steady Metal Forming Processes—I. Shape Optimization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
33
50
.
21.
Fourment
,
L.
,
Balan
,
T.
, and
Chenot
,
J. L.
, 1996, “
Optimal Design for Non-Steady Metal Forming Processes—II. Application of Shape Optimization in Forging
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
51
65
.
22.
Pilani
,
R.
,
Narasimhan
,
K.
,
Maiti
,
S. K.
,
Singh
,
U. P.
, and
Data
,
P. P.
, 2000, “
A Hybrid Intelligent Systems Approach for Die Design in Sheet Metal Forming
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
16
, pp.
370
375
.
23.
António
,
C. A. C.
, and
Dourado
,
N. M.
, 2002, “
Metal-Forming Process Optimization by Inverse Evolutionary Search
,”
J. Mater. Process. Technol.
0924-0136,
121
, pp.
403
413
.
24.
Kim
,
H. S.
,
Ko̧c
,
M.
, and
Ni
,
J.
, 2005, “
Finite Element Modeling and Analysis of Warm Forming of Aluminum Alloys—Validation Through Comparisons With Experiments and Determination of a Failure Criterion
,”
ASME J. Manuf. Sci. Eng.
, (submitted).
25.
Incropera
,
F. P.
, and
De Witt
,
D. P.
, 1990,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
, Chap. 9.
26.
Leary
,
S. J.
,
Bhaskar
,
A.
, and
Keane
,
A. J.
, 2003, “
A Knowledge-Based Approach to Response Surface Modeling in Multifidelity Optimization
,”
J. Global Optim.
0925-5001,
26
, pp.
297
319
.
You do not currently have access to this content.