A systematic approach is presented to estimate the roll separating force in bar rolling. This force is the product of the contact area between the rolled material and the roll pass, the mean unit pressure on the roll and the average flow stress within the roll gap. The contact area is determined by a computerized scheme based on a descriptive geometry approach. Also an approximate model to determine the average strain, hence the strain rate and the rolling temperature within the roll gap is proposed to estimate the flow stress from available material characterizations. The mean unit pressure on the rolls uses models existing in the literature pertinent to three-dimensional analysis of bar rolling. These models are slightly modified to encompass the unifying Δ parameter expressing the geometry of the deformation zones, namely the ratio between the mean cross-sectional area and the contact area. The present approach is applied for a variety of common types of passes employed in bar rolling. Validation of the approach is realized through comparisons of predictions with a set of about 100 experimental and industrial data points for bar rolling in various passes. A fair agreement between the predictions and the measured data points is found. Reasons for the discrepancies are discussed. Furthermore a simplified analytical model to estimate the roll separating force which includes the least of adjusting empirical factors is suggested.

1.
Wusatowski
,
Z.
, 1969,
Fundamentals of Rolling
,
Pergamon
, Oxford.
2.
Orowan
,
E.
, and
Pascoe
,
K. J.
, 1946, “
A Simple Method of Calculating Roll Pressure and Power Consumption in Hot Flat Rolling
,” Iron and Steel Institute Special Report No. E.34, p.
124
.
3.
Yanagimoto
,
S.
, and
Aoki
,
I.
, 1968, “
Study of The Mean Pressure In Hot Rolling Process
,”
Bull. JSME
0021-3764,
11
(
43
), pp.
165
171
.
4.
Shinokura
,
T.
, and
Takai
,
K
, 1986, “
tesu-to-hagane
,”
J. Iron steel inst. Japan (in Japanese)
,
72
, pp.
58
64
.
5.
Kennedy
,
K. F.
, 1988, “
An Approximate Three-Dimensional Analysis for Shape Rolling
,”
ASME J. Eng. Ind.
0022-0817,
110
, pp.
223
231
.
6.
Park
,
J. J.
, and
Oh
,
S. I.
, 1990, “
Application of Three Dimensional Finite Element Analysis to Shape Rolling Process
,”
ASME J. Eng. Ind.
0022-0817,
112
, pp.
36
46
.
7.
Shin
,
W.
,
Lee
,
S. M.
,
Shivpuri
,
R.
, and
Altan
,
T.
, 1992, “
Finite Slab Element Investigation of Square-to-Oval-Round Multipass Shape Rolling
,”
J. Mater. Process. Technol.
0924-0136,
33
, pp.
141
154
.
8.
Kim
,
N.
,
Lee
,
S. M.
,
Shin
,
W.
, and
Shivpuri
,
R.
, 1992, “
Simulation of Square-to-Oval Single Pass Rolling Using A Computationally Effective Finite Element and Slab Element Method
,”
ASME J. Eng. Ind.
0022-0817,
114
, pp.
329
336
.
9.
Komori
,
K
, 1997, “
Simulation of Deformation and Temperature in Multi-Pass Caliber Rolling
,”
J. Mater. Process. Technol.
0924-0136,
71
, pp.
329
336
.
10.
Backofen
,
W. A.
, 1972,
Deformation Processing
,
Addison-Wesley
, Reading, MA.
11.
Hosford
,
W. F.
, and
Caddell
,
R. M.
, 1983,
Metal Forming: Mechanics and Metallurgy
,
Prentice-Hall
, New York.
12.
Seredynski
,
F.
, 1973, “
Prediction of Plate Cooling During Rolling-Mill Operation
,”
J. Iron Steel Inst., London
0021-1567,
211
, pp.
197
203
.
13.
Said
,
A.
,
Lenard
,
J. G.
,
Ragab
,
A. R.
, and
Abo Elkhier
,
M.
, 1999, “
The Temperature, Roll Force and Roll Torque During Hot Bar Rolling
,”
J. Mater. Process. Technol.
0924-0136,
88
, pp.
147
153
.
14.
Serajzadeh
,
S.
, 2003, “
Prediction of Microstructural Changes During Hot Rolling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
1987
1495
.
15.
Shida
,
S. J.
, 1968, “
Empirical Formulas of Flow Stress of Low Carbon Steels
,”
J. Jpn. Soc. Technol. Plast.
0038-1586,
9
(
85
), pp.
127
132
(also Hitachi Research Report, 1947, pp. 1–8).
Shida
,
S. J.
(Also “
Empirical Formulas of Flow Stress of Low Carbon Steels
,” Hitactchi Research Report, 1974, pp.
1
8
).
16.
Lee
,
Y.
,
Kim
,
H. J.
, and
Hwang
,
S. M.
, 2001, “
Analytic Model for the Prediction of Mean Effective Strain in Rod Rolling Process
,”
J. Mater. Process. Technol.
0924-0136,
114
, pp.
129
138
.
17.
Kopp
,
R.
,
Helspr
,
T.
,
Kallabis
,
H. P.
, and
Osterburg
,
H.
, 1985, “
Modelle zur Berechnung des Stoffflussces fur Stabstahl- und Formstankaliberreihen zur Weiterentwicklung der Kalibrierungstechnik
” (in German),
Stahl Eisen
0340-4803,
105
(
18
), pp.
931
937
.
18.
Tselikov
,
A. I.
,
Nikitin
,
G. S.
, and
Rokotyan
,
S. E.
, 1981,
The Theory of Lengthwise Rolling
,
Mir
, Moscow.
19.
Altan
,
T.
,
Oh.
,
S. I
, and
Gegel
,
H. L.
, 1983,
Metal Forming: Fundamentals and Applications
,
ASME
, Cleveland, OH, pp.
249
276
.
20.
Lenard
,
J. G.
,
Wang
,
F.
, and
Nadkarni
,
G.
, 1978, “
The Role of Constitutive Formulation in the Analysis of Hot Rolling
,”
ASME J. Eng. Mater. Technol.
0094-4289,
109
, pp.
343
349
.
21.
Murthy
,
A.
, and
Lenard
,
L
, 1982, “
Statistical Evaluation of Some Hot Rolling Theories
,”
ASME J. Eng. Mater. Technol.
0094-4289,
104
, pp.
47
52
.
22.
Pomini Farrel Spa, Italy.
23.
Lee.
,
Y.
, 2002, “
New Approach for Prediction of Roll Force in Rod Rolling
,”
Ironmaking Steelmaking
0301-9233,
29
(
6
), pp.
459
468
.
24.
Lee
,
Y.
, and
Kim
,
Y. H.
, 2001, “
Approximate Analysis of Roll Force in a Round-Oval-Round Pass Rolling Sequence
,”
J. Mater. Process. Technol.
0924-0136,
113
, pp.
124
130
.
25.
Maccagono
,
T. M.
,
Jonas
,
J. J.
, and
Hodgson
,
P. D.
, 1996, “
Spread Sheet Modeling of Grain Size Evolution During Rolling
,”
ISIJ Int.
0915-1559,
36
, pp.
720
728
.
26.
Kemp
,
I. P.
, 1990, “
Model of Deformation and Heat Transfer in Hot Rolling of Bar and Sections
,”
Ironmaking Steelmaking
0301-9233,
17
, pp.
139
143
.
27.
Arnold
,
R. R.
, and
Whitton
,
P. W.
, 1975, “
Spread and Roll Force in Rod Rolling
,”
Met. Technol. (London)
0307-1693, (Mar.), pp.
143
149
.
28.
Kaikin
,
B. E.
,
Kisilenko
,
I. A.
, and
Tranovsci
,
I. Y.
, 1971,
Steel USSR
, (Nov.), pp.
884
886
.
You do not currently have access to this content.