A novel analytical tool is presented to assess the stability of simultaneous machining (SM) dynamics, which is also known as parallel machining. In SM, multiple cutting tools, which are driven by multiple spindles at different speeds, operate on the same workpiece. Its superior machining efficiency is the main reason for using SM compared with the traditional single tool machining (STM). When SM is optimized in the sense of maximizing the rate of metal removal constrained with the machined surface quality, typical “chatter instability” phenomenon appears. Chatter instability for single tool machining (STM) is broadly studied in the literature. When formulated for SM, however, the problem becomes notoriously more complex. There is practically no literature on the SM chatter, except a few ad hoc and inconclusive reports. This study presents a unique treatment, which declares the complete stability picture of SM chatter within the mathematical framework of multiple time-delay systems (MTDS). What resides at the core of this development is our own paradigm, which is called the cluster treatment of characteristic roots (CTCR). This procedure determines the regions of stability completely in the domain of the spindle speeds for varying chip thickness. The new methodology opens the research to some interesting directions. They, in essence, aim towards duplicating the well-known “stability lobes” concept of STM for simultaneous machining, which is clearly a nontrivial task.

1.
Lazoglu
,
I.
,
Vogler
,
M.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 1998, “
Dynamics of the Simultaneous Turning Process
,”
Trans. NAMRC/SME
1047-3025,
26
, pp.
135
140
.
2.
Carland
,
C.
, 1983, “
Use of Multi-Spindle Turning Automatics
,”
IPE International, Industrial and Production Engineering
,
7
, pp.
64
68
.
3.
Carland
,
C.
, 1997, “
2 Spindle are Better Than 1
,” Cutting Tool Engineering.
4.
Allcock
,
A.
, 1995, “
Turning Towards Fixed-Head ‘Multis,’
Mach. Prod. Eng.
, pp.
47
54
.
5.
Koepfer
,
C.
, 1996, “
Can This New CNC Multispindle Work for Your Shop?
Mod. Mach. Shop
,
69
, pp.
78
85
.
6.
Tlusty
,
J.
, 1985,
Machine Dynamics, Handbook of High Speed Machining Technology
,
Chapman and Hall
, New York.
7.
Merchant
,
M. E.
, 1944, “
Basic Mechanics of the Metal-Cutting Process
,”
ASME J. Appl. Mech.
0021-8936,
66
, p.
A
-
168
.
8.
Doi
,
S.
, and
Kato
,
S.
, 1956, “
Chatter Vibration of Lathe Tools
,”
Trans. ASME
0097-6822,
78
, p.
1127
.
9.
Tobias
,
S. A.
, 1961,
Machine Tool Vibration
,
Wiley
, New York.
10.
Tlusty
,
J.
,
Spacek
,
L.
,
Polacek
,
M.
, and
Danek
,
O.
, 1962,
Selbsterregte Schwingungen an Werkzeugmaschinen
,
VEB Verlag Technik
, Berlin.
11.
Merritt
,
H. E.
, 1965, “
Theory of Self Excited Machine Tool Chatter
,”
J. Eng. Ind.
0022-0817, p.
447
.
12.
Kegg
,
R. L.
, 1965, “
Cutting Dynamics in Machine Tool Chatter
,”
J. Eng. Ind.
0022-0817, p.
464
.
13.
Altintas
,
Y.
, and
Budak
,
E.
, 1995, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
0007-8506,
44
, pp.
357
362
.
14.
Smith
,
S.
, and
Tlusty
,
J.
, 1993, “
Efficient Simulation Program for Chatter in Milling
,”
CIRP Ann.
0007-8506,
42
, pp.
463
466
.
15.
Smith
,
S.
, and
Tlusty
,
J.
, 1990, “
Update on High Speed Milling Dynamics
,”
ASME J. Eng. Ind.
0022-0817,
112
, pp.
142
149
.
16.
Kuo
,
B. C.
, 1987,
Automatic Control Systems
:
Prentice-Hall
, Englewood Cliffs, NJ.
17.
Phillips
,
C. L.
, and
Harbor
,
R. D.
, 1988,
Feedback Control Systems
,
Prentice-Hall
, Englewood Cliffs, NJ.
18.
Olgac
,
N.
, and
Hosek
,
M.
, 1998, “
A New Perspective and Analysis for Regenerative Machine Tool Chatter
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
, pp.
783
798
.
19.
Altintas
,
Y.
,
Engin
,
S.
, and
Budak
,
E.
, 1999, “
Analytical Stability Prediction and Design of Variable Pitch Cutters
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
, pp.
173
178
.
20.
Hsu
,
C. S.
, 1970, “
Application of the Tau-Decomposition Method to Dynamical Systems Subjected to Retarded Follower Forces
,”
ASME J. Appl. Mech.
0021-8936,
37
, pp.
258
266
.
21.
Hsu
,
C. S.
, and
Bhatt
,
K. L.
, 1966, “
Stability Charts for Second-Order Dynamical Systems with Time Lag
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
119
124
.
22.
Chen
,
J.
,
Gu
,
G.
, and
Nett
,
C. N.
, 1995, “
A New Method for Computing Delay Margins for Stability of Linear Delay Systems
,”
Syst. Control Lett.
0167-6911,
26
, pp.
107
117
.
23.
Cooke
,
K. L.
, and
van den Driessche
,
P.
, 1986, “
On Zeros of Some Transcendental Equations
,”
Funkcialaj Ekvacioj
,
29
, pp.
77
90
.
24.
Rekasius
,
Z. V.
, 1980, “
A Stability Test for Systems with Delays
,”
presented at Proc. Joint Automatic Control Conf.
, Paper No. TP9-A.
25.
Sipahi
,
R.
, and
Olgac
,
N.
, 2002, “
A New Perspective for Time Delayed Control Systems with Application to Vibration Suppression
,” presented at ASME-IMECE, No. DSC 33535, Best Student Paper Award, New Orleans, LA.
26.
Sipahi
,
R.
, and
Olgac
,
N.
, 2003, “
Degenerate Cases in Using Direct Method
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
, pp.
194
201
.
27.
Sipahi
,
R.
, and
Olgac
,
N.
, 2003, “
Active Vibration Suppression with Time Delayed Feedback
,”
ASME J. Vibr. Acoust.
0739-3717,
125
, pp.
384
388
.
28.
Olgac
,
N.
, and
Sipahi
,
R.
, 2002, “
An Exact Method for the Stability Analysis of Time Delayed LTI Systems
,”
IEEE Trans. Autom. Control
0018-9286,
47
, pp.
793
797
.
29.
Olgac
,
N.
, and
Sipahi
,
R.
, 2004, “
A Practical Method for Analyzing the Stability of Neutral Type LTI-Time Delayed Systems
,”
Automatica
0005-1098,
40
, pp.
847
853
.
30.
Hale
,
J. K.
, and
Huang
,
W.
, 1993, “
Global Geometry of the Stable Regions for Two Delay Differential Equations
,”
J. Math. Anal. Appl.
0022-247X,
178
, pp.
344
362
.
31.
Niculescu
,
S.-I.
, 2002, “
On Delay Robustness Analysis of a Simple Control Algorithm in High-Speed Networks
,”
Automatica
0005-1098,
38
, pp.
885
889
.
32.
Stepan
,
G.
, 1989,
Retarded Dynamical Systems: Stability and Characteristic Function
,
Longman Scientific & Technical
, co-publisher
John Wiley & Sons Inc.
, New York.
33.
MacDonald
,
N.
, 1987, “
An Interference Effect of Independent Delays
,”
IEE Proc.
,
134
, pp.
38
42
.
34.
Sipahi
,
R.
, and
Olgac
,
N.
, 2004, “
A Novel Stability Study on Multiple Time-Delay Systems (MTDS) Using the Root Clustering Paradigm
,” American Control Conference, Boston, MA, FrP08.2.
35.
Sipahi
,
R.
, and
Olgac
,
N.
, 2005, “
Complete Stability Robustness of Third-Order LTI Multiple Time-Delay Systems
,”
Automatica
0005-1098,
41
(
8
), pp.
1413
1422
.
You do not currently have access to this content.