This paper presents a new sensor placement methodology for effective fault diagnosis in an N-2-1 locating scheme used in compliant sheet metal assembly processes. The proposed approach is based on the effective independence (EfI) sensor placement method. The EfI method is a computational algorithm that starts with all feasible sensor locations and reaches the desired number of locations, by progressively eliminating those having the least contributions to the linearly independent manifestation of the fixture faults. The least squares method was adopted to identify fixture faults from measurement data. An automotive panel part was considered to illustrate the suggested methodology. The sensors placed by the EfI method enable the effective identification of multiple fixture faults even in the presence of moderate measurement noise.

1.
Ceglarek
,
D.
, and
Shi
,
J.
,
1995
, “
Dimensional Variation Reduction for Automotive Body Assembly
,”
Manuf. Rev.
,
8
, pp.
139
154
.
2.
Hu, S. J., and Wu, S. M., 1992, “Identifying Root Causes of Variation in Automobile Body Assembly Using Principal Component Analysis,” Transactions of the NAMRI, 20, pp. 311–316.
3.
Ceglarek
,
D.
, and
Shi
,
J.
,
1996
, “
Fixture Failure Diagnosis for Autobody Assembly Using Pattern Recognition
,”
ASME J. Eng. Ind.
,
118
, pp.
55
66
.
4.
Apley
,
D.
, and
Shi
,
J.
,
1998
, “
Diagnosis of Multiple Fixture Faults in Panel Assembly
,”
J. Manuf. Sci. Eng.
,
120
, pp.
793
801
.
5.
Rong
,
Q.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2000
, “
Dimensional Fault Diagnosis for Compliant Beam Structure Assemblies
,”
J. Manuf. Sci. Eng.
,
122
, pp.
773
780
.
6.
Rong
,
Q.
,
Shi
,
J.
, and
Ceglarek
,
D.
,
2001
, “
Adjusted Least Squares Approach for Diagnosis of Ill-Conditioned Compliant Assemblies
,”
J. Manuf. Sci. Eng.
,
123
, pp.
453
461
.
7.
Liu, Y. G., and Hu, S. J., 2004, “Assembly Fixture Fault Diagnosis Using Designated Component Analysis,” to appear in J. Manuf. Sci. Eng.
8.
Chang
,
M.
, and
Gossard
,
D. C.
,
1998
, “
Computational Method for Diagnosis of Variation-Related Assembly Problems
,”
Int. J. Prod. Res.
,
36
, pp.
2985
2995
.
9.
Khan
,
A.
,
Ceglarek
,
D.
,
Shi
,
J.
,
Ni
,
J.
, and
Woo
,
T. C.
,
1999
, “
Sensor Optimization for Fault Diagnosis in Single Fixture Systems: A Methodology
,”
J. Manuf. Sci. Eng.
,
121
, pp.
109
117
.
10.
Djurdjanovic, D., and Ni, J., 2001, “Stream of Variation Based Analysis and Synthesis of Measurement Schemes in Multi-Station Machining Systems,” Proc. of the 2001 ASME International Mechanical Engineering Congress and Exposition, New York, NY.
11.
Ding
,
Y.
,
Kim
,
P.
,
Ceglarek
,
D.
, and
Jin
,
J.
,
2003
, “
Optimal Sensor Distribution for Variation Diagnosis for Multi-station Assembly Processes
,”
IEEE Trans. Rob. Autom.
,
19
, pp.
543
556
.
12.
Yao
,
L.
,
Sethares
,
W. A.
, and
Kammer
,
D. C.
,
1993
, “
Sensor Placement for On-Orbit Modal Identification via a Genetic Algorithm
,”
AIAA J.
,
31
, pp.
1922
1927
.
13.
Franchi
,
C. G.
, and
Gallieni
,
D.
,
1994
, “
Genetic-Algorithm-Based Procedure for Pretest Analysis
,”
AIAA J.
,
33
(
7
), pp.
1362
1364
.
14.
Kammer
,
D.
,
1991
, “
Sensor Placement in On-Orbital Modal Identification and Correlation of Large Space Structures
,”
J. Guid. Control Dyn.
,
14
, pp.
251
259
.
15.
Wan
,
Y.
, and
Nagarkar
,
S. R.
,
1999
, “
Locator and Sensor Placement for Automated Coordinate Checking Fixtures
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
709
719
.
16.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
,
1996
, “
Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
318
324
.
17.
Strang, G., 1988, Linear Algebra and its Applications, Harcourt College Publishers, 3rd ed.
18.
Poston
,
W. L.
, and
Tolson
,
R. H.
,
1992
, “
Maximizing the Determinant of the Information Matrix with the Effective Independence Method
,”
J. Guid. Control Dyn.
,
15
, pp.
1513
1514
.
You do not currently have access to this content.