The finite element formulation is studied in this paper to predict static form errors in the peripheral milling of complex thin-walled workpieces. Key issues such as cutter modeling, finite element discretization of cutting forces, tool–workpiece coupling and variation of the workpiece’s rigidity in milling are investigated. To be able to predict static form errors on the machined surface of complex form, considerable improvements are made on the proper modeling of the material removal in milling and the iterative calculations of tool-workpiece deflections. A general simulation approach is developed based on 3D irregular finite element meshes. By using illustrative examples, rigid and flexible models are compared with existing ones to show the validity of the approach.

1.
Smith
,
S.
, and
Tlusty
,
J.
,
1991
, “
An Overview of Modeling and Simulation of the Milling Process
,”
ASME J. Eng. Ind.
,
113
, pp.
169
175
.
2.
Koenigsberger
,
F.
, and
Sabberwal
,
A. J. P.
,
1961
, “
An Investigation into the Cutting Force Pulsations During Milling Operations
,”
Int. J. Mach. Tool Des. Res.
,
1
, pp.
15
33
.
3.
Altintas
,
Y.
, and
Spence
,
A.
,
1991
, “
End Milling Force Algorithms for CAD Systems
,”
CIRP Ann.
,
40
, pp.
31
34
.
4.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
E. J. A.
,
1996
, “
Prediction of Milling Force Coefficients from Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
216
224
.
5.
Zheng
,
C. M.
, and
Wang
,
J.-J.J.
,
2003
, “
Estimation of In-process Cutting Constants in Ball-End Milling
,”
Proc. Inst. Mech. Eng.
,
217
, pp.
45
56
.
6.
Yu¨cesan
,
G.
, and
Altintas
,
Y.
,
1994
, “
Improved Modeling of Cutting Force Coefficients in Peripheral Milling
,”
Int. J. Mach. Tools Manuf.
,
34
, pp.
473
487
.
7.
Sutherland
,
J. W.
, and
DeVor
,
R. E.
,
1986
, “
An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems
,”
ASME J. Eng. Ind.
,
108
, pp.
269
279
.
8.
Budak, E., and Altintas, Y., 1992, “Flexible Milling Force Model for Improved Surface Error Predictions,” Proceedings of Engineering System Design and Analysis, Istanbul, Turkey, ASME, 47, pp. 89–94.
9.
Tsai
,
J. S.
, and
Liao
,
C. L.
,
1999
, “
Finite-element Modeling of Static Surface Errors in the Peripheral Milling of Thin-Walled Workpieces
,”
J. Mater. Process. Technol.
,
94
, pp.
235
246
.
10.
Budak
,
E.
, and
Altintas
,
Y.
,
1995
, “
Modeling and Avoidance of Static Form Errors in Peripheral Milling of Plates
,”
Int. J. Mach. Tools Manuf.
,
35
, pp.
459
476
.
11.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Shareef
,
I. A.
,
1982
, “
The Prediction of Surface Accuracy in End Milling
,”
ASME J. Eng. Ind.
,
104
, pp.
272
278
.
12.
Budak
,
E.
, and
Altintas
,
Y.
,
1994
, “
Peripheral Milling Conditions for Improved Dimensional Accuracy
,”
Int. J. Mach. Tools Manuf.
,
34
, pp.
907
918
.
13.
Shirase
,
K.
, and
Altintas
,
Y.
,
1996
, “
Cutting Force and Dimensional Surface Error Generation in Peripheral Milling with Variable Pitch Helical End Mills
,”
Int. J. Mach. Tools Manuf.
,
36
, pp.
567
584
.
14.
Zhang
,
Z. H.
,
Zheng
,
L.
,
Li
,
Z. Z.
, and
Zhang
,
B. P.
,
2001
, “
Analytical Model for End Milling Surface Geometrical Error With Considering Cutting Force/Torque
,”
Chin. J. Mech. Eng.
,
37
, pp.
6
10
.
15.
Kops
,
L.
, and
Vo
,
D. T.
,
1990
, “
Determination of the Equivalent Diameter of an End Mill Based on Its Compliance
,”
CIRP Ann.
,
39
, pp.
93
96
.
16.
Ber
,
A.
,
Rotberg
,
J.
, and
Zombach
,
S.
,
1988
, “
A Method for Cutting Force Evaluation of End Mills
,”
CIRP Ann.
,
37
, pp.
37
40
.
17.
Zhang, W. H., Wan, M., and Qiu, K. P., 2002, “Numerical Simulation of Peripheral Milling Process and Prediction of Form Errors,” 6th International Conference on Progress of Machining Technology, Xi’an, China, pp. 893–898.
18.
Rozvany
,
G. I. N.
,
2001
, “
Aims, Scope, Methods, History and Unified Terminology of Computer-Aided Topology Optimization in Structural Mechanics
,”
Struct. Multidisc. Optim.
,
21
, pp.
90
108
.
You do not currently have access to this content.