In literature, four models incorporating strain rate and temperature effects are able to generalize material test results of HY-100 steel. This study compares the four models, namely, Litonski-Batra, power law, Johnson-Cook, and Bodner-Partom, in finite element modeling of orthogonal machining of this material. Consistency is found in cutting forces, as well as in stress and temperature patterns in all but the Litonski-Batra model. However, the predicted chip curls are inconsistent among the four models. Furthermore, the predicted residual stresses are substantially sensitive to the selection of material models. The magnitudes, and even the sign of the residual stresses in machined surfaces, vary with different models.
1.
Hartley
, K. A.
, and Duffy
, J.
, 1984
, “Strain Rate and Temperature History Effects During Deformation of fcc and bcc Metals
,” Inst. Phys. Conf. Ser.
, 70
, pp. 21
–30
.2.
Zener
, C.
, and Hollomon
, J. H.
, 1944
, “Effect of Strain Rate on Plastic Flow of Steel
,” J. Appl. Phys.
, 15
, pp. 22
–32
.3.
MacGregor
, C. W.
, and Fisher
, J. C.
, 1945
, “Tension Tests at Constant True Strain Rates
,” ASME J. Appl. Mech.
, 12
, pp. 217
–227
.4.
Marchand
, A.
, and Duffy
, J.
, 1988
, “An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel
,” J. Mech. Phys. Solids
, 36
, pp. 251
–283
.5.
Batra
, R. C.
, and Kim
, C. H.
, 1990
, “Effect of Viscoplastic Flow Rules on the Initiation and Growth of Shear Bands at High Strain Rates
,” J. Mech. Phys. Solids
, 38
, pp. 859
–874
.6.
Litonski
, J.
, 1977
, “Plastic Flow of a Tube Under Adiabatic Torsion
,” Bull. Acad. Pol. Sci., Ser. Sci. Tech.
, XXV
, p. 7
7
.7.
Batra
, R. C.
, 1988
, “Steady State Penetration of Thermovisoplastic Targets
,” Comput. Mech.
, 3
, pp. 1
–12
.8.
Lei
, S.
, Shin
, Y. C.
, and Incropera
, F. P.
, 1999
, “Material Constitutive Modeling Under High Strain Rates and Temperatures Through Orthogonal Machining Tests
,” ASME J. Manuf. Sci. Eng.
, 121
, pp. 577
–585
.9.
Johnson, G. R., and Cook, W. H., 1983, “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rate, and Temperatures,” International Symposium on Ballistics, The Hauge, The Netherlands, pp. 1–7.
10.
Lee
, W. S.
, and Lin
, C. F.
, 1998
, “Plastic Deformation and Fracture Behavior of Ti-6A1-4V Alloy Loaded With High Strain Rate Under Various Temperatures
,” Mater. Sci. Eng., A
, 241
(1-2
), pp. 48
–59
.11.
Bodner
, S. R.
, and Partom
, Y.
, 1975
, “Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials
,” ASME J. Appl. Mech.
, 56
, pp. 385
–389
.12.
Chen
, Z. G.
, and Black
, J. T.
, 1994
, “FEM Modeling in Metal Cutting
,” Manuf. Rev.
, 7
(2
), pp. 120
–133
.13.
Stevenson
, M. G.
, and Oxley
, P. L. B.
, 1970
, “Experimental Investigation on the Influence of Speed and Scale on the Strain-Rate in a Zone of Intense Plastic Deformation
,” Proc. Inst. Mech. Eng.
, 184
, pp. 561
–576
.14.
Stevenson
, M. G.
, and Oxley
, P. L. B.
, 1971
, “An Experimental Investigation of the Influence of Strain Rate and Temperature on the Flow Stress Properties of a Low C Steel Using a Machining Test
,” Proc. Inst. Mech. Eng.
, 185
, pp. 741
–754
.15.
Oxley, PL. B., 1989, Mechanics of Machining, Chicester, Ellis Horwood.
16.
Guo
, Y. B.
, and Liu
, C. R.
, 2002
, “Mechanical Properties of Hardened AISI 52100 Steel in Hard Machining Process
,” ASME J. Manuf. Sci. Eng.
, 124
(1
), pp. 1
–9
.17.
Guo
, Y. B.
, and Liu
, C. R.
, 2002
, “3-D FEA Modeling of Superfinish Hard Turning
,” ASME J. Manuf. Sci. Eng.
, 124
(2
), pp. 189
–199
.18.
Shi, J., and Liu, C. R., 2003, “Prediction of Chip Morphology and Phase Transformation in Hard Machining,” Int. J. Adv. Manuf. Technol. (in press).
19.
Lin
, Z. C.
, and Pan
, W. C.
, 1993
, “A Thermoelastic-Plastic Large Deformation Model for Orthogonal Cutting With Tool Flank Wear-Part I: Computational Procedures
,” Int. J. Mech. Sci.
, 35
(10
), pp. 829
–840
.20.
Lin
, Z. C.
, and Pan
, W. C.
, 1993
, “A Thermoelastic-Plastic Large Deformation Model for Orthogonal Cutting With Tool Flank Wear-Part II: Machining Application
,” Int. J. Mech. Sci.
, 35
(10
), pp. 841
–850
.21.
Lei
, S.
, Shin
, Y. C.
, and Incropera
, F. P.
, 1999
, “Thermo-Mechanical Modeling of Orthogonal Machining Process by Finite Element Analysis
,” Int. J. Mach. Tools Manuf.
, 39
, pp. 731
–750
.22.
Moufki
, A.
, Molinari
, A.
, and Dudzinski
, D.
, 1998
, “Modeling of Orthogonal Cutting With a Temperature Dependent Friction Law
,” J. Mech. Phys. Solids
, 46
(10
), pp. 2103
–2138
.23.
Maekawa, K., Kitagawa, T., Shirakashi, T., and Childs, T. H., 1993, “Finite Element Simulation of Three-Dimensional Continuous Chip Formation Processes,” Proc. 8th ASPE Annual Meeting, Seattle, USA, pp. 519–522.
24.
Maekawa, K., Ohshima, I., Kubo, K., and Kitagawa, T., 1994, “The Effect of Cutting Speed and Feed on Chip Flow and Tool Wear in the Machining of a Titanium Alloy,” Proc. Int. Conf. on Behavior of Materials in Machining, Warwick, November, 15–17, pp. 152–167.
25.
Maekawa
, K.
, and Ohhata
, H.
, 1997
, “Simulation Analysis of Three-Dimensional Continuous Chip Formation Processes (Part 3)
,” Int. J. Jpn. Soc. Precis. Eng.
, 31
(2
), pp. 103
–108
.26.
Ozel
, T.
, and Altan
, T.
, 2000
, “Determining Workpiece Flow Stress and Friction at the Chip-Tool Contact for High Speed Cutting
,” Int. J. Mach. Tools Manuf.
, 40
(5
), pp. 133
–152
.27.
Shatla
, M.
, Kerk
, C.
, and Altan
, T.
, 2001
, “Process Modeling in Machining, I: Determination of Flow Stress Data
,” Int. J. Mach. Tools Manuf.
, 41
(10
), pp. 1511
–1534
.28.
Shatla
, M.
, Kerk
, C.
, and Altan
, T.
, 2001
, “Process Modeling in Machining, II: Validation and Applications of the Determined Flow Stress Data
,” Int. J. Mach. Tools Manuf.
, 41
(11
), pp. 1659
–1680
.29.
Ng
, E.-G.
, and Aspinwell
, D. K.
, 2000
, “Hard Part Machining AISI H13(∼50HRC) Using AMBORITE AMB90: A Finite Element Modeling Approach
,” IDR, Ind. Diamond Rev.
, 60
, pp. 305
–310
.30.
Sekhon
, G. S.
, and Chenot
, S.
, 1993
, “Numerical Simulation of Continuous Chip Formation During Nonsteady Orthogonal Cutting
,” Eng. Comput.
, 10
, pp. 31
–48
.31.
Marusich
, T. D.
, and Ortiz
, M.
, 1995
, “Modeling and Simulation of High Speed Machining
,” Int. J. Numer. Methods Eng.
, 38
, pp. 3675
–3694
.32.
Hibbit, Karlson, and Sorenson, Inc., 2001, ABAQUS/Explicit User’s Manual V6.2, Providence, RI.
33.
Batra
, R. C.
, and Jaber
, N. A.
, 2001
, “Failure Mode Transition in an Impact Loaded Prenotched Plate With for Thermoviscoplastic Relations
,” Int. J. Fract.
, 110
, pp. 47
–71
.34.
Strenkowski
, J. S.
, and Corrol
, III, J. T.
, 1985
, “A Finite Element Model of Orthogonal Metal Cutting
,” ASME J. Eng. Ind.
, 107
, pp. 349
–354
.35.
Shih
, A. J.
, 1995
, “Finite Element Simulation of Orthogonal Metal Cutting
,” ASME J. Eng. Ind.
, 117
, pp. 84
–93
.36.
Zhang
, B.
, and Bagchi
, A.
, 1994
, “Finite Element Simulation of Chip Formation and Comparison With Machining Experiment
,” ASME J. Eng. Ind.
, 116
, pp. 289
–297
.37.
Shirakashi
, T.
, Sasahara
, H.
, Obikawa
, T.
, and Wada
, T.
, 1994
, “The Analytical Prediction of Residual Stress Within Machined Sublayer and its Effect on Accuracy
,” Int. J. Jpn. Soc. Precis. Eng.
, 28
, pp. 200
–205
.38.
Childs, T. H. C., Maekawa, K., Obikawa, T., and Yamane, Y., 2000, Metal Machining-Theory and Applications, Arnold, Wiley, New, York.
39.
Childs
, T. H. C.
, 1972
, “The Rake Face Action of Cutting Lubricants
,” Proc. Inst. Mech. Eng.
, 186
, pp. 717
–727
.40.
Brinksmeier
, E.
, Cammett
, J. T.
, and Konig
, W.
, 1982
, “Residual stresses-measurement and causes in machining processes
,” CIRP Ann.
, 31
(2
), pp. 491
–510
.41.
Field, M, Kahles, J. F., and Koster, W. P., 1978, “Surface Finish and Surface Integrity,” Metal Handbook, Ninth Edition, Vol. 16, Machining, ASM International, Metals Park, Ohio, pp. 19–36.
42.
El-Helieby
, S. O. A.
, and Rowe
, G. W.
, 1980
, “A Quantitative Comparison Between Residual Stresses and Fatigue Properties of Surface-Ground Bearing Steel (En31)
,” Wear
, 58
, pp. 155
–172
.43.
Liu
, C. R.
, and Mittal
, S.
, 1998
, “Optimal Pre-Stressing the Surface of a Component by Super-Finish Hard Turning for Maximum Fatigue Life in Rolling Contact
,” Wear
, 29
, pp. 128
–140
.44.
Liu
, C. R.
, and Barash
, M. M.
, 1976
, “The Mechanical State of the Sublayer of the Surface Generated by Chip Removal Process, I: Cutting With Sharp Tool
,” ASME J. Eng. Ind.
, 98
(4
), pp. 1192
–1201
.45.
Liu
, C. R.
, and Barash
, M. M.
, 1976
, “The Mechanical State of the Sublayer of the Surface of the Surface Generated by Chip Removal Process, II: Cutting With a Tool With Flank Wear
,” ASME J. Eng. Ind.
, 98
(4
), pp. 1202
–1208
.46.
Jang
, D. Y.
, Liou
, J.
, and Cho
, U.
, 1994
, “Study of Residual Stress Distribution in the Machines Stainless Steel Components
,” Tribol. Trans.
, 37
, pp. 594
–600
.47.
Agha, S. R. and Liu, C. R., 2000, “On Modeling the Fatigue Performance Based on Residual Stresses Generated by Superfinish Hard Turning,” ASME MED Manufacturing Science and Engineering, 11, pp. 1047–1053.
Copyright © 2004
by ASME
You do not currently have access to this content.