In literature, four models incorporating strain rate and temperature effects are able to generalize material test results of HY-100 steel. This study compares the four models, namely, Litonski-Batra, power law, Johnson-Cook, and Bodner-Partom, in finite element modeling of orthogonal machining of this material. Consistency is found in cutting forces, as well as in stress and temperature patterns in all but the Litonski-Batra model. However, the predicted chip curls are inconsistent among the four models. Furthermore, the predicted residual stresses are substantially sensitive to the selection of material models. The magnitudes, and even the sign of the residual stresses in machined surfaces, vary with different models.

1.
Hartley
,
K. A.
, and
Duffy
,
J.
,
1984
, “
Strain Rate and Temperature History Effects During Deformation of fcc and bcc Metals
,”
Inst. Phys. Conf. Ser.
,
70
, pp.
21
30
.
2.
Zener
,
C.
, and
Hollomon
,
J. H.
,
1944
, “
Effect of Strain Rate on Plastic Flow of Steel
,”
J. Appl. Phys.
,
15
, pp.
22
32
.
3.
MacGregor
,
C. W.
, and
Fisher
,
J. C.
,
1945
, “
Tension Tests at Constant True Strain Rates
,”
ASME J. Appl. Mech.
,
12
, pp.
217
227
.
4.
Marchand
,
A.
, and
Duffy
,
J.
,
1988
, “
An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel
,”
J. Mech. Phys. Solids
,
36
, pp.
251
283
.
5.
Batra
,
R. C.
, and
Kim
,
C. H.
,
1990
, “
Effect of Viscoplastic Flow Rules on the Initiation and Growth of Shear Bands at High Strain Rates
,”
J. Mech. Phys. Solids
,
38
, pp.
859
874
.
6.
Litonski
,
J.
,
1977
, “
Plastic Flow of a Tube Under Adiabatic Torsion
,”
Bull. Acad. Pol. Sci., Ser. Sci. Tech.
,
XXV
, p.
7
7
.
7.
Batra
,
R. C.
,
1988
, “
Steady State Penetration of Thermovisoplastic Targets
,”
Comput. Mech.
,
3
, pp.
1
12
.
8.
Lei
,
S.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
1999
, “
Material Constitutive Modeling Under High Strain Rates and Temperatures Through Orthogonal Machining Tests
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
577
585
.
9.
Johnson, G. R., and Cook, W. H., 1983, “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rate, and Temperatures,” International Symposium on Ballistics, The Hauge, The Netherlands, pp. 1–7.
10.
Lee
,
W. S.
, and
Lin
,
C. F.
,
1998
, “
Plastic Deformation and Fracture Behavior of Ti-6A1-4V Alloy Loaded With High Strain Rate Under Various Temperatures
,”
Mater. Sci. Eng., A
,
241
(
1-2
), pp.
48
59
.
11.
Bodner
,
S. R.
, and
Partom
,
Y.
,
1975
, “
Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials
,”
ASME J. Appl. Mech.
,
56
, pp.
385
389
.
12.
Chen
,
Z. G.
, and
Black
,
J. T.
,
1994
, “
FEM Modeling in Metal Cutting
,”
Manuf. Rev.
,
7
(
2
), pp.
120
133
.
13.
Stevenson
,
M. G.
, and
Oxley
,
P. L. B.
,
1970
, “
Experimental Investigation on the Influence of Speed and Scale on the Strain-Rate in a Zone of Intense Plastic Deformation
,”
Proc. Inst. Mech. Eng.
,
184
, pp.
561
576
.
14.
Stevenson
,
M. G.
, and
Oxley
,
P. L. B.
,
1971
, “
An Experimental Investigation of the Influence of Strain Rate and Temperature on the Flow Stress Properties of a Low C Steel Using a Machining Test
,”
Proc. Inst. Mech. Eng.
,
185
, pp.
741
754
.
15.
Oxley, PL. B., 1989, Mechanics of Machining, Chicester, Ellis Horwood.
16.
Guo
,
Y. B.
, and
Liu
,
C. R.
,
2002
, “
Mechanical Properties of Hardened AISI 52100 Steel in Hard Machining Process
,”
ASME J. Manuf. Sci. Eng.
,
124
(
1
), pp.
1
9
.
17.
Guo
,
Y. B.
, and
Liu
,
C. R.
,
2002
, “
3-D FEA Modeling of Superfinish Hard Turning
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
189
199
.
18.
Shi, J., and Liu, C. R., 2003, “Prediction of Chip Morphology and Phase Transformation in Hard Machining,” Int. J. Adv. Manuf. Technol. (in press).
19.
Lin
,
Z. C.
, and
Pan
,
W. C.
,
1993
, “
A Thermoelastic-Plastic Large Deformation Model for Orthogonal Cutting With Tool Flank Wear-Part I: Computational Procedures
,”
Int. J. Mech. Sci.
,
35
(
10
), pp.
829
840
.
20.
Lin
,
Z. C.
, and
Pan
,
W. C.
,
1993
, “
A Thermoelastic-Plastic Large Deformation Model for Orthogonal Cutting With Tool Flank Wear-Part II: Machining Application
,”
Int. J. Mech. Sci.
,
35
(
10
), pp.
841
850
.
21.
Lei
,
S.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
1999
, “
Thermo-Mechanical Modeling of Orthogonal Machining Process by Finite Element Analysis
,”
Int. J. Mach. Tools Manuf.
,
39
, pp.
731
750
.
22.
Moufki
,
A.
,
Molinari
,
A.
, and
Dudzinski
,
D.
,
1998
, “
Modeling of Orthogonal Cutting With a Temperature Dependent Friction Law
,”
J. Mech. Phys. Solids
,
46
(
10
), pp.
2103
2138
.
23.
Maekawa, K., Kitagawa, T., Shirakashi, T., and Childs, T. H., 1993, “Finite Element Simulation of Three-Dimensional Continuous Chip Formation Processes,” Proc. 8th ASPE Annual Meeting, Seattle, USA, pp. 519–522.
24.
Maekawa, K., Ohshima, I., Kubo, K., and Kitagawa, T., 1994, “The Effect of Cutting Speed and Feed on Chip Flow and Tool Wear in the Machining of a Titanium Alloy,” Proc. Int. Conf. on Behavior of Materials in Machining, Warwick, November, 15–17, pp. 152–167.
25.
Maekawa
,
K.
, and
Ohhata
,
H.
,
1997
, “
Simulation Analysis of Three-Dimensional Continuous Chip Formation Processes (Part 3)
,”
Int. J. Jpn. Soc. Precis. Eng.
,
31
(
2
), pp.
103
108
.
26.
Ozel
,
T.
, and
Altan
,
T.
,
2000
, “
Determining Workpiece Flow Stress and Friction at the Chip-Tool Contact for High Speed Cutting
,”
Int. J. Mach. Tools Manuf.
,
40
(
5
), pp.
133
152
.
27.
Shatla
,
M.
,
Kerk
,
C.
, and
Altan
,
T.
,
2001
, “
Process Modeling in Machining, I: Determination of Flow Stress Data
,”
Int. J. Mach. Tools Manuf.
,
41
(
10
), pp.
1511
1534
.
28.
Shatla
,
M.
,
Kerk
,
C.
, and
Altan
,
T.
,
2001
, “
Process Modeling in Machining, II: Validation and Applications of the Determined Flow Stress Data
,”
Int. J. Mach. Tools Manuf.
,
41
(
11
), pp.
1659
1680
.
29.
Ng
,
E.-G.
, and
Aspinwell
,
D. K.
,
2000
, “
Hard Part Machining AISI H13(∼50HRC) Using AMBORITE AMB90: A Finite Element Modeling Approach
,”
IDR, Ind. Diamond Rev.
,
60
, pp.
305
310
.
30.
Sekhon
,
G. S.
, and
Chenot
,
S.
,
1993
, “
Numerical Simulation of Continuous Chip Formation During Nonsteady Orthogonal Cutting
,”
Eng. Comput.
,
10
, pp.
31
48
.
31.
Marusich
,
T. D.
, and
Ortiz
,
M.
,
1995
, “
Modeling and Simulation of High Speed Machining
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
3675
3694
.
32.
Hibbit, Karlson, and Sorenson, Inc., 2001, ABAQUS/Explicit User’s Manual V6.2, Providence, RI.
33.
Batra
,
R. C.
, and
Jaber
,
N. A.
,
2001
, “
Failure Mode Transition in an Impact Loaded Prenotched Plate With for Thermoviscoplastic Relations
,”
Int. J. Fract.
,
110
, pp.
47
71
.
34.
Strenkowski
,
J. S.
, and
Corrol
, III,
J. T.
,
1985
, “
A Finite Element Model of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
,
107
, pp.
349
354
.
35.
Shih
,
A. J.
,
1995
, “
Finite Element Simulation of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
,
117
, pp.
84
93
.
36.
Zhang
,
B.
, and
Bagchi
,
A.
,
1994
, “
Finite Element Simulation of Chip Formation and Comparison With Machining Experiment
,”
ASME J. Eng. Ind.
,
116
, pp.
289
297
.
37.
Shirakashi
,
T.
,
Sasahara
,
H.
,
Obikawa
,
T.
, and
Wada
,
T.
,
1994
, “
The Analytical Prediction of Residual Stress Within Machined Sublayer and its Effect on Accuracy
,”
Int. J. Jpn. Soc. Precis. Eng.
,
28
, pp.
200
205
.
38.
Childs, T. H. C., Maekawa, K., Obikawa, T., and Yamane, Y., 2000, Metal Machining-Theory and Applications, Arnold, Wiley, New, York.
39.
Childs
,
T. H. C.
,
1972
, “
The Rake Face Action of Cutting Lubricants
,”
Proc. Inst. Mech. Eng.
,
186
, pp.
717
727
.
40.
Brinksmeier
,
E.
,
Cammett
,
J. T.
, and
Konig
,
W.
,
1982
, “
Residual stresses-measurement and causes in machining processes
,”
CIRP Ann.
,
31
(
2
), pp.
491
510
.
41.
Field, M, Kahles, J. F., and Koster, W. P., 1978, “Surface Finish and Surface Integrity,” Metal Handbook, Ninth Edition, Vol. 16, Machining, ASM International, Metals Park, Ohio, pp. 19–36.
42.
El-Helieby
,
S. O. A.
, and
Rowe
,
G. W.
,
1980
, “
A Quantitative Comparison Between Residual Stresses and Fatigue Properties of Surface-Ground Bearing Steel (En31)
,”
Wear
,
58
, pp.
155
172
.
43.
Liu
,
C. R.
, and
Mittal
,
S.
,
1998
, “
Optimal Pre-Stressing the Surface of a Component by Super-Finish Hard Turning for Maximum Fatigue Life in Rolling Contact
,”
Wear
,
29
, pp.
128
140
.
44.
Liu
,
C. R.
, and
Barash
,
M. M.
,
1976
, “
The Mechanical State of the Sublayer of the Surface Generated by Chip Removal Process, I: Cutting With Sharp Tool
,”
ASME J. Eng. Ind.
,
98
(
4
), pp.
1192
1201
.
45.
Liu
,
C. R.
, and
Barash
,
M. M.
,
1976
, “
The Mechanical State of the Sublayer of the Surface of the Surface Generated by Chip Removal Process, II: Cutting With a Tool With Flank Wear
,”
ASME J. Eng. Ind.
,
98
(
4
), pp.
1202
1208
.
46.
Jang
,
D. Y.
,
Liou
,
J.
, and
Cho
,
U.
,
1994
, “
Study of Residual Stress Distribution in the Machines Stainless Steel Components
,”
Tribol. Trans.
,
37
, pp.
594
600
.
47.
Agha, S. R. and Liu, C. R., 2000, “On Modeling the Fatigue Performance Based on Residual Stresses Generated by Superfinish Hard Turning,” ASME MED Manufacturing Science and Engineering, 11, pp. 1047–1053.
You do not currently have access to this content.