This paper discusses the development of a mechanistic model that describes the rate of flow reduction (i.e., flux decline) for a semi-synthetic metalworking fluid (MWF) during the application of microfiltration for extended MWF reuse and recycling. For the transport of unused semi-synthetic MWF through microfiltration membranes ranging in pore size from 0.2 to 5.0 micrometers, Environmental Scanning Electron Microscopy (ESEM) and Confocal Scanning Laser Microscopy (CSLM) are used to identify three interdependent and sequential mechanisms of flux decline: pore constriction, pore blockage, and surface film retardation. These mechanisms are modeled together mathematically as a four-parameter model that quantitatively describes flux decline versus time for semi-synthetic MWF as a function of membrane pore size and transmembrane pressure. The four parameters of the model are the rate constants for pore constriction and pore blocking, the steady-state effective internal pore constriction, and the specific surface film resistance. Independent experimental observations confirmed both the existence of the three stages of flux decline, and the physical interpretation of the model parameters across the pore size range of polycarbonate membranes investigated. It was also found that the mechanistic model fit experimental flux data over time with low error and that the magnitudes and trends of the model parameters closely fit direct microscopic observations and expected behavior of fouled membrane surfaces. Consequently, the mechanistic model enables quantitative modeling of microscopic phenomena at the membrane surface using only macroscale flux observations. This will enable a better understanding of the relationship between MWF formulation and membrane transport in novel MWF recycling applications.

1.
Independent Lubricant Manufacturers Association, 2000, “1999 Volume Survey: Report on the Volume of Lubricants Manufactured in the United States and Canada by Independent Lubricant Manufacturers in 1999,” ILMA, Alexandria, VA, pp. 1–2.
2.
Skerlos, S. J., Adriaens, P., Hayes, K., Rihana, A., Kurabayashi, K., Takayama, S., Zimmerman, J., and Zhao, F., 2001, “Challenges to Achieving Sustainable Aqueous Systems: A Case Study in Metalworking Fluids,” Proceedings of EcoDesign 2001: 2nd International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, December 13–16, pp. 146–153.
3.
Sutherland
,
J.
,
Cao
,
T.
,
Daniel
,
C.
,
Yue
,
Y.
,
Zeng
,
Y.
,
Sheng
,
P.
,
Bauer
,
D.
,
Srinivasan
,
M.
,
DeVor
,
R.
,
Kapoor
,
S. V.
, and
Skerlos
,
S. J.
,
1997
, “
CFEST: An Internet-based Cutting Fluid Evaluation Software Testbed
,”
Transactions of NAMRI/SME
,
25
(
5
), pp.
243
248
.
4.
National Institute of Occupational Safety and Health, 1998, “Criteria for a Recommended Standard: Occupational Exposure to Metalworking Fluids,” NIOSH, Cincinnati, OH, Chap. 4-5. http://www.cdc.gov/niosh/98-102.html.
5.
U.S. Environmental Protection Agency, 2003, “Effluent Limitations Guidelines and New Source Performance Standards for the Metal Products and Machinery Point Source Category,” EPA, 40 CFR Part 438, http://www.epa.gov/fedrgstr/EPA-WATER/2003/May/Day-13/w4258.htm.
6.
Skerlos
,
S. J.
,
Skerlos
,
L. A.
,
Aguilar
,
C. A.
, and
Zhao
,
F.
,
2003
, “
Expeditious Identification and Quantification of Mycobacteria Species in Metalworking Fluids using Peptide Nucleic Acids
,”
J. Manuf. Syst.
,
22
(
2
), pp.
136
147
.
7.
Sko¨ld
,
R. O.
,
1991
, “
Field Testing of a Model Water-based Metalworking Fluid Designed for Continuous Recycling Using Ultrafiltration
,”
Lubr. Eng.
,
47
(
8
), pp.
653
659
.
8.
Skerlos
,
S. J.
, and
Zhao
,
F.
,
2003
, “
Economic Considerations in the Implementation of Microfiltration for Metalworking Fluid Biological Control
,”
J. Manuf. Syst.
,
22
(
3
), pp.
202
219
.
9.
Childers, J., 1994, The Chemistry of Metalworking Fluids, Metalworking Fluids, Byers, J. P. ed., Marcel Dekker, Inc, New York, Chap. 6.
10.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. V.
, and
Don Angspatt
,
V.
,
2001
, “
Microfiltration of Polyoxyalkylene Metalworking Fluid Lubricant Additives Using Aluminum Oxide Membranes
,”
ASME J. Manuf. Sci. Eng.
,
123
(
11
), pp.
692
699
.
11.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. V.
, and
Don Angspatt
,
V.
,
2000
, “
Ingredient-Wise Study of Flux Characteristics in the Ceramic Membrane Filtration of Uncontaminated Synthetic Metalworking Fluids, Part 1: Experimental Investigation of Flux Decline
,”
ASME J. Manuf. Sci. Eng.
,
122
(
11
), pp.
739
745
.
12.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. V.
, and
Don Angspalt
,
V.
,
2000
, “
Ingredient-Wise Study of Flux Characteristics in the Ceramic Membrane Filtration of Uncontaminated Synthetic Metalworking Fluids, Part 2: Analysis of underlying mechanisms
,”
ASME J. Manuf. Sci. Eng.
,
122
(
11
), pp.
746
752
.
13.
Zimmerman
,
J.
,
Hayes
,
K.
, and
Skerlos
,
S. J.
,
2003
, “
Influence of Ion Type and Concentration on the Emulsion Stability and Machining Performance of Two Semi-Synthetic Metalworking Fluids
,”
Environ. Sci. Technol.
,
38
(
8
), pp.
2482
2490
.
14.
Zimmerman
,
J.
,
Clarens
,
A.
,
Hayes
,
K.
, and
Skerlos
,
S. J.
,
2003
, “
Design of Hardwater Stable Emulsifier Systems for Petroleum- and Bio-Based Semi-Synthetic Metalworking Fluids
,”
Environ. Sci. Technol.
,
37
(
23
), pp.
5278
5288
.
15.
The University of Tennessee Center for Industrial Services Waste Reduction Assistance Program, 1997, “New Ultrafiltration Unit Reduces Waste, Saves Money for TRW,” WRAPSHEET, 7(2), University of Tennessee Center for Industrial Service, Knoxville, TN, pp. 1–5.
16.
Koltuniewicz
,
A. B.
,
Field
,
R. W.
, and
Arnot
,
T. C.
,
1995
, “
Cross-flow and Dead-end Microfiltration of Oily-water Emulsion, Part 1: Experimental Study and Analysis of Flux Decline
,”
J. Membr. Sci.
,
102
(
1
), pp.
193
207
.
17.
Lipp
,
P.
,
Lee
,
C. H.
,
Fane
,
A. G.
, and
Fell
,
C. J. D.
,
1988
, “
A Fundamental Study of the Ultrafiltration of Oil-water Emulsions
,”
J. Membr. Sci.
,
36
(
1
), pp.
161
177
.
18.
Zimmerman, J., Takahashi, S., Hayes, K., and Skerlos, S. J., 2003, “Experimental and Statistical Design Considerations For Economical Evaluation Of Metalworking Fluids Using The Tapping Torque Test,” Lubr. Eng. April, pp. 17–24.
19.
Houck, C., et al., 1995, “A Genetic Algorithm for Function Optimization: A Matlab Implementation,” Technical Report No. NCSU-IE TR 95-09, North Carolina State University, Raleigh, NC.
20.
Kundu, P. K., 1990, Fluid Mechanics, Academic Press, San Diego, CA, Chap. 9.
21.
Happel, J., and Brenner, H., 1983, Low Reynolds Number Hydrodynamics Nijhoff International Publishing, Dordrecht, Netherlands, Chap. 3.
22.
Song
,
L.
,
1998
, “
Flux Decline in Cross-flow Microfiltration and Ultrafiltration: Mechanisms and Modeling of Membrane Fouling
,”
J. Membr. Sci.
,
139
(
2
), pp.
183
200
.
23.
Cheryan, M., 1998, Ultrafiltration and Microfiltration Handbook, Technomic, Lancaster, PA, Chap. 4.
24.
Davis, R. H., and Grant, D. C., 1992, “Theory for Deadend Microfiltration,” in Ho, W. S. W., and Sirkar, K. K. eds., Membrane Handbook, Van Nostrand Reinhold, New York, Chap. 32.
25.
Arnot
,
T. C.
,
Field
,
R. W.
, and
Koltuniewz
,
A. B.
,
2000
, “
Cross-Flow and Dead-End Microfiltration of Oily-Water Emulsions. Part II. Mechanisms and Modelling of Flux Decline
,”
J. Membr. Sci.
,
169
(
1
), pp.
1
15
.
26.
Hermia
,
J.
,
1982
, “
Constant Pressure Blocking Filtration Laws—Application to Power-Law Non-Newtonian Fluids
,”
Trans. Inst. Chem. Eng.
,
60
(
2
), pp.
183
187
.
27.
Wakeman, R. J., and Tarleton, E. S., 1999, Filtration: Equipment Selection, Modeling and Process Simulation, Elsevier Advanced Technology, New York, Chap. 3.
28.
Webber
,
R. W.
,
Anderson
,
J. L.
, and
Jhon
,
M. S.
,
1990
, “
Hydrodynamic Studies of Adsorbted Diblock Copolymers in Porous Membranes
,”
Macromolecules
,
23
(
4
),
1026
1034
.
You do not currently have access to this content.