This paper develops a new analytical model to predict the chip back-flow angle in machining with restricted contact grooved tools. The model is derived from a recently established universal slip-line model for machining with restricted contact cutaway tools. A comprehensive definition of the chip back-flow angle is presented first, and based on this, a quantitative analysis of the chip back-flow effect is established for a given set of cutting conditions, tool geometry, and variable tool-chip interfacial stress state. The model also predicts the cutting forces, the chip thickness, and the chip up-curl radius. A full experimental validation of the analytical predictive model involving the use of high speed filming technique is then presented for the chip back-flow angle. This validation provides a range of feasible/prevalent tool-chip interfacial frictional conditions for the given set of input conditions.

1.
Chao
,
B. T.
, and
Trigger
,
K. J.
,
1959
, “
Controlled Contact Cutting Tools
,”
ASME J. Eng. Ind.
,
81
, pp.
139
151
.
2.
Oxley
,
P. L. B.
,
1962
, “
An Analysis for Orthogonal Cutting with Restricted Tool-Chip Contact
,”
Int. J. Mech. Sci.
,
4
, pp.
129
135
.
3.
Lo
,
S. Y.
,
Lode
,
U.
, and
Armarego
,
E. J. A.
,
1966
, “
Experiments with Controlled Contact Tools
,”
Int. J. Mach. Tool Des. Res.
,
6
, pp.
115
127
.
4.
Friedman
,
M. Y.
, and
Lenz
,
E.
,
1970
, “
Investigation of the Tool-Chip Contact Length in Metal Cutting
,”
Int. J. Mach. Tool Des. Res.
,
10
, pp.
401
416
.
5.
Jawahir, I. S., 1986, “An Experimental and Theoretical Study of the Effects of Tool Restricted Contact on Chip Breaking,” Ph.D. Thesis, The University of New South Wales, Australia.
6.
Jawahir
,
I. S.
,
1988
, “
The Tool Restricted Contact Effect as a Major Influencing Factor in Chip Breaking: an Experimental Analysis
,”
CIRP Ann.
,
37
, pp.
121
126
.
7.
Takeyama
,
H.
, and
Usui
,
E.
,
1958
, “
The Effect of Tool-Chip Contact Area in Metal Machining
,”
Trans. ASME
,
80
, pp.
1089
1096
.
8.
Hoshi, K., and Usui, E., 1962, “Wear Characteristics of Carbide Tools with Artificially Controlled Tool-Chip Contact Length,” Proceedings of the 3rd International MTDR Conference, University of Birmingham, September, pp. 121–128.
9.
Usui
,
E.
, and
Shaw
,
M. C.
,
1962
, “
Free Machining Steel-IV: Tools with Reduced Contact Length
,”
ASME J. Eng. Ind.
,
84
, pp.
89
102
.
10.
De Chiffre
,
L.
,
1982
, “
Cutting Tools with Restricted Contact
,”
Int. J. Mach. Tool Des. Res.
,
22
, pp.
321
331
.
11.
Johnson
,
W.
,
1962
, “
Some Slip-Line Fields for Swaging or Expanding, Indenting, Extruding and Machining for Tools with Curved Dies
,”
Int. J. Mech. Sci.
,
4
, pp.
323
347
.
12.
Usui
,
E.
, and
Hoshi
,
K.
, 1963, “Slip-Line Fields in Metal Machining Which Involve Centered Fans,” International Research for Production Engineering, ASME, 61, pp. 61–67.
13.
Kudo
,
H.
,
1965
, “
Some New Slip-Line Solutions for Two-Dimensional Steady-State Machining
,”
Int. J. Mech. Sci.
,
7
, pp.
43
55
.
14.
Shi
,
T.
, and
Ramalingam
,
S.
,
1993
, “
Modeling Chip Formation With Grooved Tools
,”
Int. J. Mech. Sci.
,
35
, pp.
741
756
.
15.
Childs
,
T. H. C.
,
1980
, “
Elastic Effects in Metal Cutting Chip Formation
,”
Int. J. Mech. Sci.
,
22
, pp.
457
466
.
16.
Strenkowski
,
J. S.
, and
Athavale
,
S. M.
,
1997
, “
A Partially Constrained Eulerian Orthogonal Cutting Model for Chip Control Tool
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
681
688
.
17.
Athavale
,
S. M.
, and
Strenkowski
,
J. S.
,
1997
, “
Material Damage-Based Model for Predicting Chip Breakability
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
675
680
.
18.
Childs, T. H. C., Maekawa, K., Obikawa, T., and Yamane, Y., 2001, Metal Machining Theory and Applications, Arnold, London, United Kingdom.
19.
Dillon, O. W., and Zhang, H., 1999, “An Analysis of Cutting Using a Grooved Tool,” Proceedings of the 2nd CIRP International Workshop on Modeling of Machining Operations, Nantes, France, 25-26 January.
20.
Mittal
,
R. N.
, and
Juneja
,
B. L.
,
1982
, “
Effect of Stress Distribution on the Shear Angle in Controlled Contact Orthogonal Cutting
,”
Int. J. Mach. Tool Des. Res.
,
22
, pp.
87
96
.
21.
Rubenstein
,
C.
,
1968
, “
The Mechanism of Orthogonal Cutting with Controlled Contact Tools
,”
Int. J. Mach. Tool Des. Res.
,
8
, pp.
203
216
.
22.
Zhu
,
R.
,
Kapoor
,
S. G.
,
Devor
,
R. E.
, and
Athavale
,
S. M.
,
1999
, “
Mechanistic Force Models for Chip Control Tools
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
408
416
.
23.
Arsecularatne
,
J. A.
, and
Oxley
,
P. L. B.
,
1997
, “
Prediction of Cutting Forces in Machining with Restricted Contact Tools
,”
Mach. Sci. Technol.
1
, pp.
95
112
.
24.
Worthington
,
B.
,
1975
, “
The Effect of Rake Face Configuration on the Curvature of the Chip in Metal Cutting
,”
Int. J. Mach. Tool Des. Res.
,
15
, pp.
223
239
.
25.
Fang
,
N.
,
Jawahir
,
I. S.
, and
Oxley
,
P. L. B.
,
2001
, “
A Universal Slip-Line Model with Nonunique Solutions for Machining With Curled Chip Formation and a Restricted Contact Tool
,”
Int. J. Mech. Sci.
,
43
, pp.
557
580
.
26.
Dewhurst
,
P.
,
1978
, “
On the Non-Uniqueness of the Machining Process
,”
Proc. R. Soc. London, Ser A
,
360
, pp.
587
610
.
27.
Lee
,
E. H.
, and
Shaffer
,
B. W.
,
1951
, “
The Theory of Plasticity Applied to a Problem of Machining
,”
Trans. ASME
,
18
, pp.
405
413
.
28.
Merchant
,
M. E.
,
1944
, “
Basic Mechanics of the Metal Cutting Process
,”
Trans. ASME
,
66
, pp.
A168–A175
A168–A175
.
29.
Dewhurst
,
P.
,
1979
, “
The Effect of Chip Breaker Constraints on the Mechanics of the Machining Process
,”
CIRP Ann.
,
28
, pp.
1
5
.
30.
Green
,
A. P.
,
1954
, “
On the Use of Hodographs in Problems of Plane Plastic Strain
,”
J. Mech. Phys. Solids
,
2
, pp.
73
80
.
31.
Hill, R., 1998, The Mathematical Theory of Plasticity, Oxford University Press, Oxford, United Kingdom.
32.
Johnson, W., Sowerby, R., and Haddow, J. B., 1970, Plane-Strain Slip-Line Field: Theory and Bibliography, American Elsevier Publishing Company, Inc., New York.
33.
Oxley, P. L. B., 1989, The Mechanics of Machining: An Analytical Approach to Assessing Machinability, Ellis Horwood Limited, Chichester, United Kingdom.
34.
Fang
,
N.
, and
Jawahir
,
I. S.
,
2002
, “
An Analytical Predictive Model and Experimental Validation for Machining with Grooved Tools Incorporating the Effects of Strains, Strain-Rates, and Temperatures
,”
CIRP Ann.
,
51
, pp.
83
86
.
35.
Shih
,
A. J.
,
1996
, “
Finite Element Analysis of the Rake Angle Effects on Orthogonal Metal Cutting
,”
Int. J. Mech. Sci.
,
38
, pp.
1
17
.
36.
Ozel
,
T.
, and
Taylan
,
A.
,
2000
, “
Determination of Workpiece Flow Stress and Friction at the Chip-Tool Contact for High Speed Cutting
,”
International Journal of Machine Tools and Manufacture
,
40
, pp.
133
152
.
37.
Fang
,
N.
, and
Jawahir
,
I. S.
,
2002
, “
Analytical Predictions and Experimental Validation of Cutting Forces, Chip Thickness, and Chip Back-Flow Angle in Restricted Contact Machining Using the Universal Slip-Line Model
,”
International Journal of Machine Tools and Manufacture
,
42
, pp.
681
694
.
38.
Fang
,
N.
,
2003
, “
Machining with Tool-Chip Contact on the Tool Secondary Rake Face—Part I: A New Slip-Line Model
,”
Int. J. Mech. Sci.
,
44
, pp.
2337
2354
.
39.
Fang
,
N.
,
2003
, “
Machining with Tool-Chip Contact on the Tool Secondary Rake Face—Part II: Analysis and Discussion
,”
Int. J. Mech. Sci.
,
44
, pp.
2355
2368
.
40.
Dewhurst
,
P.
, and
Collins
,
I. F.
,
1973
, “
A Matrix Technique Constructing Slip-Line Field Solutions to a Class of Plane Strain Plasticity Problems
,”
Int. J. Numer. Methods Eng.
,
7
, pp.
357
378
.
41.
Powell, M. J. D., 1970, “A Fortran Subroutine for Solving Systems of Non-Linear Algebraic Equations,” in Rabinpwitz, 1970, Numerical Methods for Nonlinear Algebraic Equations, Gordon and Breach, London, United Kingdom.
42.
Hill
,
R.
,
1954
, “
The Mechanics of Machining: A New Approach
,”
J. Mech. Phys. Solids
,
3
, pp.
47
53
.
43.
Fang
,
N.
, and
Jawahir
,
I. S.
,
2001
, “
A New Methodology for Determining the Stress State of the Plastic Region in Machining with Restricted Contact Tools
,”
Int. J. Mech. Sci.
,
43
, pp.
1747
1770
.
44.
Fang
,
N.
, and
Jawahir
,
I. S.
, 2000, “Prediction and Validation of Chip Up-Curl in Machining Using the Universal Slip-Line Model,” Transaction of the NAMRC, 28, pp. 137–142.
You do not currently have access to this content.