This paper presents a new methodology for analytically simulating multi-axis machining of complex sculptured surfaces. A generalized approach is developed for representing an arbitrary cutting edge design, and the local surface topology of a complex sculptured surface. A NURBS curve is used to represent the cutting edge profile. This approach offers the advantages of representing any arbitrary cutting edge design in a generic way, as well as providing standardized techniques for manipulating the location and orientation of the cutting edge. The local surface topology of the part is defined as those surfaces generated by previous tool paths in the vicinity of the current tool position. The local surface topology of the part is represented without using a computationally expensive CAD system. A systematic prediction technique is then developed to determine the instantaneous tool/part interaction during machining. The methodology employed here determines cutting edge in-cut segments by determining the intersection between the NURBS curve representation of the cutting edge and the defined local surface topology. These in-cut segments are then utilized for predicting instantaneous chip load, static and dynamic cutting forces, and tool deflection. Part 1 of this paper details the modeling methodology and demonstrates the capabilities of the simulation for machining a complex surface. Part 2 details both the model calibration procedure and discusses a case study of process optimization through feed rate scheduling.

1.
Frain, G., 1992, Curves and Surfaces for CAGD, First Edition, Academic press, San Diego, CA.
2.
Piegl, L., and Tiller, W., 1997, The NURBS Book, Second Edition, Springer, New York.
3.
Marshall
,
S.
, and
Griffiths
,
J. G.
,
1994
, “
A Survey of Cutter Path Construction Techniques for Milling Machines
,”
Int. J. Prod. Res.
32
(
12
), pp.
2861
2877
.
4.
Bedi
,
S.
, and
Cohen
,
E.
,
1994
, “
Toolpath Generation for Freeform Surface Models
,”
Comput.-Aided Des.
,
18
, pp.
307
313
.
5.
Li
,
S. X.
, and
Jerard
,
R. B.
,
1994
, “
5-Axis Machining of Sculptured Surfaces with Flat-end cutter
,”
Comput.-Aided Des.
,
26
(
3
), pp.
165
178
.
6.
Held
,
M.
,
Lukacs
,
G.
, and
Andor
,
L.
,
1994
, “
Pocket Machining Based on Contour-Parallel Tool Paths Generated by Means of Proximity Map
,”
Comput.-Aided Des.
,
26
(
3
), pp.
189
202
.
7.
Elbert
,
G.
, and
Cohen
,
E.
,
1994
, “
Toolpath Generation for Freeform Surface Models
,”
Comput.-Aided Des.
,
26
(
6
), pp.
490
496
.
8.
Haung
,
Y.
, and
Oliver
,
J. H.
,
1994
, “
Non-Constant Parameter NC Tool Path Generation On Sculptured Surfaces
,”
Int. Journal of Advanced Manufacturing Technology
,
9
, pp.
281
290
.
9.
Kim
,
K.
, and
Jeong
,
L.
,
1995
, “
Tool Path Generation for Machining Free Form Pockets with Islands
,”
Computers and Industrial Engineering
,
28
(
2
), pp.
399
407
.
10.
Maeng
,
H. Y.
,
Ly
,
M. H.
, and
Vickers
,
G. W.
,
1996
, “
Feature-Based Machining of Curved Surfaces Using the Steepest Directed Tree Approach
,”
J. Manuf. Syst.
,
15
(
6
), pp.
379
391
.
11.
Chuang
,
S.
, and
Lin
,
W.
,
1997
, “
Tool Path Generation for Pockets with Free Form Curve using Bezier Convex Hulls
,”
Int. Journal of Advanced Manufacturing Technology
,
13
(
2
), pp.
109
115
.
12.
Lee
,
Y. S.
,
1998
, “
Non-isoparametric Tool Path Planning by Machining Strip Evaluation for 5-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
,
30
(
7
), pp.
559
570
.
13.
Rao
,
N.
,
Bedi
,
S.
, and
Buchal
,
R.
,
1996
, “
Implementation of the Principal-Axis Method for Machining of Complex Surfaces
,”
Int. Journal of Advanced Manufacturing Technology
,
11
, pp.
249
257
.
14.
Voelcker, H. B., and Hunt, W. A., 1981, “The Role of Solid Modeling in Machining-Process Modeling and NC Verification,” Int’l Congress and Exposition, Society of Automotive Engineers, pp. 1–8.
15.
Chappel
,
I. T.
,
1983
, “
The Use of Vectors to Simulate Material Removed by Numerically Controlled Milling
,”
Comput.-Aided Des.
,
15
(
3
), pp.
156
158
.
16.
Anderson
,
R. O.
,
1987
, “
Detecting and Eliminating Collisions in NC Machining
,”
Comput.-Aided Des.
,
10
(
4
), pp.
231
237
.
17.
Jerrard
,
R. B.
,
Drysdale
,
R. L.
, and
Haulk
,
K.
,
1988
, “
Geometric Simulation for Numerical Control Machining
,”
Proc. ASME Int’l. Comp. Eng. Conf.
,
2
, pp.
129
136
.
18.
Wang
,
W. P.
, and
Wang
,
K. K.
,
1986
, “
Geometric Modeling for Swept Volume of Moving Solids
,”
IEEE Comput. Graphics Appl.
,
12
, pp.
8
17
.
19.
Wang
,
W. P.
,
1988
, “
Solid Modeling for Optimizing Metal Removal of Three Dimensional End-Milling
,”
J. Manuf. Syst.
,
7
(
1
), pp.
57
65
.
20.
Takata
,
S.
,
Tsai
,
M. D.
, and
Sata
,
T.
,
1989
, “
A Cutting Simulation System for Machinability, Evaluation Using a Workpiece Model
,”
CIRP Ann.
,
38
(
1
), pp.
417
420
.
21.
Takata
,
S.
,
1993
, “
Generation of a Machining Scenerio and its Applications to Intelligent Machining Operations
,”
CIRP Ann.
,
42
(
1
),
531
535
.
22.
Spence
,
A. D.
, and
Altintas
,
Y.
,
1994
, “
A Solid Modeler Based Milling Process Simulation and Planning System
,”
ASME J. Eng. Ind.
,
116
, pp.
61
69
.
23.
El-Mounayri, H., Spence, A. D., and Elbestawi, M. A., 1996, “Enhanced CAD/CAM for Simulation and Optimization of 3–5 Axis Milling of Dies and Molds,” Proc. Conf. Of CSME, McMaster University.
24.
El-Mounayri
,
H.
,
Spence
,
A. D.
, and
Elbestawi
,
M. A.
,
1998
, “
Milling Process Simulation-A Generic Solid Modeller Based Paradigm
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
213
221
.
25.
Imani, B., 1998, “Model Based Die Cavity Machining Simulation Methodology,” Ph.D. thesis, McMaster University, Hamilton, ON.
26.
Yang
,
M.
, and
Park
,
H.
,
1991
, “
The Prediction of Cutting Forces in Ball-End Milling
,”
Int. J. Mach. Tools Manuf.
,
31
(
1
), pp.
45
54
.
27.
Feng
,
H. Y.
, and
Meng
,
C.
,
1993
, “
The Prediction of Cutting Forces in the Ball End Milling Process, Part 1: Model Formulation and Model Building Procedure
,”
Int. J. Mach. Tools Manuf.
,
34
(
5
), pp.
697
710
.
28.
Armarego
,
E. J. A.
, and
Deshpande
,
N. P.
,
1993
, “
Force Prediction Models and CAD/CAM Software for Helical Tooth Milling Processes, Part-I: Basic Approach and Cutting Analysis
,”
Int. J. Prod. Res.
,
31
(
8
), pp.
1991
2009
.
29.
Armarego
,
E. J. A.
, and
Deshpande
,
N. P.
,
1993
, “
Force Prediction Models and CAD/CAM Software for Helical Tooth Milling Processes, Part II: Peripheral Milling Operations
,”
Int. J. Prod. Res.
,
31
(
10
), pp.
2319
2336
.
30.
Abrari
,
F.
, and
Elbestawi
,
M. A.
,
1996
, “
Closed Form Formulation of Cutting Forces for Ball and Flat End Mills
,”
Int. J. Mach. Tools Manuf.
,
37
(
1
), pp.
17
27
.
31.
Yucesan
,
G.
, and
Altintas
,
Y.
,
1996
, “
Prediction of Ball End Milling Forces
,”
ASME J. Eng. Ind.
,
118
, pp.
95
103
.
32.
Lazoglu, I., and Liang, S. Y., 1996, “An Improved Analytical Modeling of Force System in Ball-End Milling,” Proc. Conf. Of CSME, McMaster University.
33.
Altintas
,
Y.
,
2000
, “
Modeling Approaches and Software for Predicting the Performance of Milling Operations at MAL-UBC
,”
Mach. Sci. Technol.
,
4
(
3
), pp.
445
478
.
34.
Lazoglu
,
I.
, and
Liang
,
S. Y.
,
2000
, “
Modeling of Ball-End Milling Forces with Cutter Axis Inclination
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
3
11
.
35.
Lim
,
E. H.
, and
Menq
,
C. H.
,
1997
, “
Integrated Planning For Precision Machining of Complex Surfaces, Part 1: Cutting-Path and Feedrate Optimization
,”
Int. J. Mach. Tool Des. Res.
,
37
(
1
), pp.
61
75
.
36.
Chu
,
C. N.
,
Kim
,
S. Y.
, and
Lee
,
J.
,
1997
, “
Feed-Rate Optimization of Ball End Milling Considering Local Shape Features
,”
CIRP Ann.
,
46
(
1
), pp.
433
436
.
37.
Yazar
,
Z.
,
Koch
,
K. F.
,
Merrick
,
T.
, and
Altan
,
T.
,
1994
, “
Feed Rate Optimization Based on Cutting Force Calculations in 3-Axis Milling of Dies and Molds with Sculptured Surfaces
,”
Int. J. Mach. Tool Des. Res.
,
34
(
3
), pp.
365
377
.
38.
Zheng, L., and Liang, S. Y., 1995, “Analysis of End Milling Forces with Cutter Axis Tilt,” Transactions of NAMRI/SME, Vol. 23, pp. 137–142.
39.
Kapoor, S. G., DeVor, R. E., Zhu, R., Gajjela, R., Parakkal, G., and Smithey, D., 1998, “Development of Mechanistic Models for the Prediction of Machining Performance: Model-Building Methodology,” CIRP International Workshop on Modeling of Machining Operations, No. 2, pp. 1–12.
40.
Smith
,
S.
, and
Tlusty
,
J.
,
1991
, “
An Overview of Modeling and Simulation of the Milling Process
,”
ASME J. Eng. Ind.
,
113
(
1
), pp.
169
175
.
41.
Abrari, F., 1998, “MultiAxis Milling of Flexible Parts,” Ph.D. thesis, McMaster University, Hamilton, ON.
42.
Yucesan
,
G.
, and
Altintas
,
Y.
,
1993
, “
Mechanics of Ball End Milling Process
,”
ASME J. Manuf. Sci. Eng.
,
64
, pp.
543
551
.
43.
Bailey, T. E., 2001, “Generic Mechanistic Modeling for Multi-Axis Machining,” Ph.D. thesis, McMaster University, Hamilton, ON.
You do not currently have access to this content.