Ultrasonics is a widely used nondestructive testing technique, which is often applied off-line for weld quality inspection. Laser ultrasonic (LU) inspection systems have the potential for on-line application, providing the means to identify unacceptable welds as they are formed. Because LU systems are non-contacting, they can be used for testing moving specimens or for operation in hazardous and/or high temperature environments. A highly versatile system can be created when an optical fiber delivery system is incorporated into the design. Introduction of a focusing objective increases the allowable working distance and permits stronger generation using material ablation as the generating mechanism. This paper describes the development of a laser ultrasonic probe using an optical fiber delivery system with a distal end, focusing objective. The optical fiber delivery system can be configured as a single fiber source, a linear array (fiber bundle) or a phased array. Results include experimentally obtained directivity patterns demonstrating ultrasonic generation using ablation sources. Thermoelastic source results are also included. This paper demonstrates the potential of the fiber tool and presents an overview of the weld control scheme.

1.
Lott, L. A., Johnson, J. A., and Smartt, H. B., 1984 “Real-time Ultrasonic Sensing of Arc Welding Processes,” Proceedings of the Symposium on Nondestructive Evaluation Application and Materials Processing, American Society for Metals, Metals Park, Ohio, pp. 13–22.
2.
Carlson
,
N. M.
, and
Johnson
,
J. A.
,
1988a
, “
Ultrasonic Sensing of Weld Pool Penetration
,”
Weld. J. (Miami)
,
67
, No.
11
, pp.
239s–246s
239s–246s
.
3.
Stroud, R., 1989, “Problems and Observations whilst Dynamically Monitoring Molten Weld Pools using Ultrasound,” 31, No. 1, pp. 29–32.
4.
Fenn
,
R.
,
1989
, “
Monitoring and Controlling Welding by Ultrasonic Means
,”
Br. J. Non-Destr. Test.
,
31
, No.
2
, pp.
82
86
.
5.
Choi
,
M. S.
, and
Yang
,
M. S.
,
1991
, “
Quality Evaluation and Control of End Cap Welds in PHWR Fuel Elements by Ultrasonic Examination
,”
J. Nucl. Mater.
,
178
, pp.
321
327
.
6.
Yang, J., Sanderson, T., Graham, G., and Ume, C., 1994, “Ultrasonic Weld Penetration Depth Sensing with Laser Phased Array,” ASME International Mechanical Engineering Conference and Exposition, Chicago, IL, Nov. 14–18, PED-v 68-1, pp. 245–254.
7.
Yang
,
J.
,
Sanderson
,
T.
,
Graham
,
G.
, and
Ume
,
C.
,
1996
, “
Laser Phased Array Measurement of Simulated Solidified Weld Penetration Depth
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
266
271
.
8.
Katz, J. M., 1982, “Ultrasonic Measurement and Control of Weld Penetration,” M.S. Thesis, M.I.T. Cambridge, MA.
9.
Fortunko, C. M., Schramm, R. E., Moulder, J. C., and McColskey, J. D., 1984, “Electromagnetic-Acoustic-Transducer/Synthetic-Aperature System for Thick-Weld Inspection,” Natl. Bur. Stand. Circ. (U. S.), pp. 1–96.
10.
Carlson
,
N. M.
, et al.
,
1992
, “
Ultrasonic NDT Methods for Weld Sensing
,”
Mater. Eval.
,
50
, No.
11
, Nov., pp.
1338
1343
.
11.
Ogilvy
,
J. A.
, and
Temple
,
J. A. G.
,
1990
, “
Theoretical Assessment of the Errors Involved in Ultrasonic Location and Sizing of Molten Weld Pools
,”
Ultrasonics
,
28
, No.
6
, pp.
375
381
.
12.
Graham
,
G. M.
, and
Ume
,
C.
,
1997
, “
Automated System for Laser Ultrasonic Sensing of Weld Penetration
,”
Mechatronics
,
7
, No.
8
, pp.
711
721
.
13.
Graham
,
G. M.
,
Ume
,
C.
, and
Hopko
,
S. N.
,
2000
, “
Laser Ultrasonic Sensing of Penetration Depth in Robotic Welding: Simulated Liquid Welds
,”
ASME J. Manuf. Sci. Eng.
,
122
, No.
1
, pp.
70
75
.
14.
Dewhurst
,
R. J.
,
Hutchins
,
D. A.
,
Palmer
,
S. B.
, and
Scruby
,
C. B.
,
1982
, “
Quantitative Measurements of Laser-generated Acoustic Waves
,”
J. Appl. Phys.
,
53
, pp.
4064
4071
.
15.
Jones, M. G., 1989, “Laser Materials Processing with a Lensless Fiber Optic Output Coupler,” U.S. Patent #4799755.
16.
Doubrava, J. H., Ticknor, G. W., and Jones, M. G., 1990, “Implementation of Laser Welding for Lamp Leads,” ICALEO, pp. 400–410.
17.
Coulter, L. E., 1984, “Laser Welding Apparatus,” U.S. Patent #4578554.
18.
Kocher, R. C., 1985, “Fiber Optic Beam Delivery System for High-Power Laser,” U.S. Patent #4707073.
19.
Jones, M. G., and Georgalas, G., 1987, “Apparatus and Method for Performing Material Processing through a Fiber Optic,” U.S. Patent #4676586.
20.
Jarzynski
,
J.
, and
Berthelot
,
Y. H.
,
1989
, “
The Use of Optical Fibers to Enhance the Laser Generation of Ultrasonic Waves
,”
J. Acoust. Soc. Am.
,
85
, No.
1
, pp.
158
162
.
21.
Yang
,
J.
,
DeRidder
,
N.
,
Ume
,
C.
, and
Jarzynski
,
J.
,
1993
, “
Noncontact Optical Fiber Phased Array Generation of Ultrasound for Nondestructive Evaluation of Materials and Processes
,”
Ultrasonics
,
31
, No.
6
, pp.
387
394
.
22.
Yang
,
J.
, and
Ume
,
C.
,
1994
, “
Performance Evaluation of Fiber Array for NDE Application
,”
Res. Nondestruct. Eval.
,
5
, No.
3
, pp.
175
190
.
23.
Burger
,
C. P.
,
Schumacher
,
N. A.
,
Duffer
,
C. E.
, and
Knab
,
T. D.
,
1993
, “
Fiber-Optic Techniques for Generating and Detecting Ultrasonic Waves for Quantitative NDE
,”
Opt. Lasers Eng.
,
19
, pp.
121
140
.
24.
Scruby, C. B., and Drain, L. E., 1990, Laser Ultrasonics: Techniques and Applications, Adam Hilger, New York.
25.
McNab
,
A.
, and
Campbell
,
M. J.
,
1987
, “
Ultrasonic Phased Arrays for Nondestructive Testing
,”
NDT Int.
,
20
, No.
8
, pp.
333
337
.
26.
Bruinsma
,
A. J. A.
, and
Vogel
,
J. A.
,
1988
, “
Ultrasonic Non-contact Inspection System with Optical Fiber Methods
,”
Appl. Opt.
,
27
, No.
22
, pp.
4690
4695
.
27.
Noroy, M., Royer, D., and Fink, M., 1992, “Focusing and Steering of Ultrasonic Waves Generated by a Sixteen Laser Source Array,” Society of Photo-Optical Instrumentation Engineers, New Developments in Ultrasonic Transducers and Transducer Systems, 21–22 July, San Diego, CA.
28.
Ing
,
R. K.
,
Fink
,
M.
, and
Gires
,
F.
,
1992
, “
Directivity Patterns of a Moving Thermoelastic Source in Solid Media
,”
IEEE Trans. Ultrason. Ferroelectr. Freq.
,
39
, No.
2
, pp.
285
292
.
29.
Verboven
,
P.
,
1994
, “
Pulsed Kilowatt Nd:Yag Laser with Fiber Optic Delivery
,”
SPIE
,
2206
, pp.
416
425
.
You do not currently have access to this content.