A technique for measuring temperature at the interface between a cutting tool and a chip is developed. A two-color pyrometer with fused fiber coupler is applied to the temperature measurement of the tool-chip interface in dry and wet turning. By using this pyrometer, it is possible to measure the temperature of a very small object without emissivity affecting the results. A translucent alumina sintered under HIP is used as the cutting tool, and an annealed carbon steel AISI 1045 is used as the workpiece. Water-soluble coolant is introduced onto the rake surface of the tool. The technique developed is suitable for measuring temperature at tool-chip interface, either in dry or wet cutting conditions. The effect of coolant on the temperature is small, since temperature reduction is only about 3 percent compared with the temperature in dry cutting. The temperature distributions on the cutting tool and the work material are analyzed using the finite element method. Good agreement is obtained between the analytical results and experimental ones.

1.
Takeyama
,
H.
, and
Murata
,
R.
,
1963
, “
Basic Investigation of Tool Wear
,”
ASME J. Eng. Ind.
,
85
, pp.
33
33
.
2.
Balint
,
J. J.
, and
Brown
,
R. H.
,
1964
, “
A Note on the Investigation of Rake Face Tool Wear
,”
Int. J. Mach. Tool Des. Res.
,
4
, pp.
117
122
.
3.
Usui
,
E.
,
Shirakashi
,
T.
, and
Kitagawa
,
T.
,
1978
, “
Analytical Prediction of Three Dimensional Cutting Process. Part 3: Cutting Temperature and Creater Wear of Carbide Tool
,”
ASME J. Eng. Ind.
,
100
, pp.
236
243
.
4.
Gottwein
,
K.
,
1925
, “
Die Messung der Schneidentemperatur beim Abdrehen von Flusseisen
,”
Maschinenbau
,
4
, pp.
1129
1135
.
5.
Shore
,
H.
,
1925
, “
Thermoelectric Measurement of Cutting Tool Temperature
,”
J. Wash. Acad. Sci.
,
15
, pp.
85
88
.
6.
Herbert
,
E. G.
,
1926
, “
The Measurement of Cutting Temperatures
,”
Proc. Inst. Mech. Eng.
,
1
, pp.
289
329
.
7.
Reichenbach
,
G. S.
,
1958
, “
Experimental Measurement of Metal Cutting Temperature Distribution
,”
Trans. ASME
,
80
, pp.
525
525
.
8.
Qureshi
,
A. H.
, and
Koenigsberger
,
F.
,
1966
, “
An Investigation into the Problem of Measuring the Temperature Distribution on the Rake Face of a Cutting Tool
,”
CIRP Ann.
,
14
, pp.
189
199
.
9.
Barrow
,
G.
,
1973
, “
A Review of Experimental and Theoretical Techniques for Assessing Cutting Temperatures
,”
CIRP Ann.
,
22
, No.
2
, pp.
203
211
.
10.
Mu¨ller-Hummel
,
P.
, and
Lahres
,
M.
,
1995
, “
Temperature Measurement on Diamond-Coated Tools during Machining
,”
Ind. Diamond Rev.
,
55
, No.
265
, pp.
78
83
.
11.
Kottentstette
,
J. P.
,
1986
, “
Measuring Tool-Chip Interface Temperatures
,”
ASME J. Eng. Ind.
,
108
, pp.
101
104
.
12.
Ueda
,
T.
,
Iriyama
,
T.
, and
Sugita
,
T.
,
1995
, “
Measurement of Flush Temperature of Ceramics Irradiated with CO2 Laser-Application of Two-Color Pyrometer Using Fused Fiber Coupler
,”
Journal of JSPE
,
61
, No.
2
, pp.
278
282
(in Japanese).
13.
Ueda
,
T.
,
Sato
,
M.
,
Sugita
,
T.
, and
Nakayama
,
K.
,
1995
, “
Thermal Behavior of Cutting Grain in Grinding
,”
CIRP Ann.
,
44
, No.
1
, pp.
325
328
.
14.
Ueda
,
T.
,
Yamada
,
K.
, and
Nakayama
,
K.
,
1997
, “
Temperature of Work Materials Irradiated with CO2 Laser
,”
CIRP Ann.
,
46
, No.
1
, pp.
117
122
.
15.
Ueda
,
T.
,
Sato
,
M.
, and
Nakayama
,
K.
,
1998
, “
The Temperature of a Single Crystal Diamond Tool in Turning
,”
CIRP Ann.
,
47
, No.
1
, pp.
41
44
.
16.
Ueda
,
T.
,
Al Huda
,
M.
,
Yamada
,
K.
, and
Nakayama
,
K.
,
1999
, “
Temperature Measurement of CBN Tool in Turning of High Hardness Steel
,”
CIRP Ann.
,
48
, No.
1
, pp.
63
66
.
17.
Ueda
,
T.
,
Kanada
,
Y.
,
Sato
,
M.
, and
Sugita
,
T.
,
1992
, “
Measurement of Machining Temperature Using Infrared Radiation Pyrometer with Optical Fiber (Characteristics of Pyrometer)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
,
58
, No.
545
, pp.
302
309
(in Japanese).
18.
Konenberg, M., 1966, Machining Science and Application, Theory and Practice for Operation and Development of Machining Process, Pergamon Press, Oxford.
19.
Shaw, M. C., 1984, Metal Cutting Principle, Oxford Press, New York.
20.
Tay
,
A. O.
,
Stevenson
,
M. G.
, and
de Vahl Davis
,
G.
,
1974
, “
Using the Finite Element Method to Determine Temperature Distributions in Orthogonal Machining
,”
Proc. Inst. Mech. Eng.
,
188
, pp.
627
638
.
21.
Tay
,
A. O.
,
Stevenson
,
M. G.
,
de Vahl Davis
,
G.
, and
Oxley
,
O. L. B.
,
1976
, “
A Numerical Method for Calculation Temperature Distributions in Machinings, from Force and Shear Angle Measurement
,”
Int. J. Mach. Tool Des. Res.
,
16
, pp.
335
349
.
22.
Child
,
T. H. C.
,
Maekawa
,
K.
, and
Maulik
,
P.
,
1988
, “
Effects of Coolant on Temperature Distribution in Metal Machining
,”
Mater. Sci. Technol.
,
4
, pp.
1006
1019
.
23.
Li
,
X.
,
Kopalinsky
,
E. M.
, and
Oxley
,
P. L. B.
,
1995
, “
A Numerical Method for Determining Temperature Distributions in Machining with Coolant. Part 1: Modeling and Process
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
209
, pp.
33
43
.
24.
Taniguchi, T., 1992, Automatic Mesh Generation for Finite Element Method—Application of Delaunay Triangulation, Morikita Syuppan, Tokyo (in Japanese).
25.
Li
,
X.
,
Kopalinsky
,
E. M.
, and
Oxley
,
P. L. B.
,
1995
, “
A Numerical Method for Determining Temperature Distributions in Machining with Coolant. Part 2: Calculation Method and Results
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
209
, pp.
45
52
.
You do not currently have access to this content.