Material handling of compliant sheet metal parts significantly impacts both part dimensional quality and production rate in the stamping industry. This paper advances previously developed material handling end effector layout optimization methodology for rigid point end effectors [1] by developing a dexterous part-holding end effector model. This model overcomes the shortcomings of the rigid point part-holding end effector model by predicting part deformation more accurately for various modes of deformation and for a set of part-holding end effector locations. This is especially important for handling systems which utilize vacuum cup end effectors widely used for handling of large sheet metal parts. The dexterous end effector model design method and an algorithm for estimation of model parameters are developed. The algorithm combines data from design of computer simulations and from the set of experiments by integrating finite element analysis and a statistical data processing technique. Experimental studies are conducted to verify the developed model and the model parameter estimation algorithm. The developed methodology provides an analytical tool for product and process designers to accurately predict part deformation during handling, which further leads to minimization of part deformation, improvement of part dimensional quality and increase of production rate.

1.
Ceglarek
,
D.
,
Li
,
H. F.
, and
Tang
,
Y.
,
2001
, “
Modeling and Optimization of Fixture for Handling Compliant Sheet Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
123/3
, pp.
473
480
.
2.
Li, D., Ceglarek, D., and Shi, J. 1993, “Sliding Door Process Variation Study,” Technical Report for Chrysler Corp., The University of Michigan, Ann Arbor.
3.
Wu, X., Shi, J., and Hu, S., 1996, “On-Site Measurement and Process Monitoring for Stamping Variation Reduction,” Technical Report, the 2mm Program, NIST-Advanced Technology Program, pp. 61–80.
4.
Hockenberger
,
M.
, and
DeMeter
,
E.
,
1995
, “
The Effect of Machining Fixture Design Parameters on Workpiece Displacement
,”
Manufacturing Review
,
8/1
, pp.
22
33
.
5.
Asada
,
H.
, and
By
,
A.
,
1985
, “
Kinematic Analysis of Workpart Fixturing for Flexible Assembly with Automatically Reconfigurable Fixtures
,”
IEEE Journal of Robotics and Automation
,
RA-1/2
, pp.
86
94
.
6.
Chou
,
Y-C.
,
Chandru
,
V.
, and
Barash
,
M. M.
,
1989
, “
A Mathematical Approach to Automatic Configuration of Machining Fixtures: Analysis and Synthesis
,”
ASME J. Ind.
,
111
, pp.
299
306
.
7.
Salisbury
,
J. K.
, and
Roth
,
B.
,
1983
, “
Kinematic and Force Analysis of Articulated Mechanical Hands
,”
ASME J. Mech., Transm., Autom. Des.
,
105
, pp.
35
41
.
8.
Nguyen
,
V.
,
1988
, “
Constructing Force-closure Grasps
,”
Int. J. Robot. Res.
,
7/3
, pp.
3
16
.
9.
DeMeter
,
E. C.
,
1994
, “
Restraint Analysis of Fixtures which Rely on Surface Contact
,”
ASME J. Eng. Ind.
,
116
/2, pp.
207
215
.
10.
Menassa
,
R.
, and
DeVries
,
W.
,
1989
, “
Locating Point Synthesis in Fixture Design
,”
CIRP Ann.
,
38/1
, pp.
165
169
.
11.
Menassa
,
R.
, and
DeVries
,
W.
,
1991
, “
Optimization Methods Applied to Selecting Support Positions in Fixturing Design
,”
ASME J. Eng. Ind.
,
113
, pp.
412
418
.
12.
DeMeter
,
E. C.
,
1995
, “
Min-Max Load Model for Optimizing Machining Fixture Performance
,”
ASME J. Eng. Ind.
,
117
, pp.
186
193
.
13.
Lee
,
J. D.
, and
Haynes
,
L. S.
,
1987
, “
Finite Element Analysis of Flexible Fixturing Systems
,”
ASME J. Eng. Ind.
,
109
, pp.
134
139
.
14.
Youcef-Toumi
,
K.
,
Liu
,
W.
, and
Asada
,
H.
,
1988
, “
Computer-Aided Analysis of Reconfigurable Fixtures and Sheet Metal Parts for Robotics Drilling
,”
Rob. Comput.-Integr. Manufact.
,
4
(
3-4
), pp.
387
394
.
15.
Cai
,
W.
,
Hu
,
S.
, and
Yuan
,
J.
,
1996
, “
Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
318
324
.
16.
DeMeter
,
E. C.
,
1998
, “
Fast Support Layout Optimization
,”
Int. J. Mach. Tools Manuf.
,
38
, pp.
1221
1239
.
17.
Li
,
B.
, and
Melkote
,
S. N.
,
1999
, “
Improved Workpiece Location Accuracy Through Fixture Layout Optimization
,”
Int. J. Mach. Tools Manuf.
,
39/6
, pp.
871
883
.
18.
Oden
,
J. T.
, and
Pires
,
E. B.
,
1983
, “
Nonlocal and Nonlinear Friction Laws and Variational Principles for Contact Problems in Elasticity
,”
ASME J. Appl. Mech.
,
50
, pp.
67
76
.
19.
Sinha
,
P. R.
, and
Abel
,
J. M.
,
1992
, “
A Contact Stress Model for Multi-Fingered Grasps of Rough Objects
,”
IEEE Trans. Rob. Autom.
,
8/1
, pp.
7
22
.
20.
Yeh
,
J. H.
, and
Liou
,
F. W.
,
1999
, “
Contact Condition Modeling for Machining Fixture Setup Processes
,”
Int. J. Mach. Tools Manuf.
,
39/5
, pp.
787
803
.
21.
Lin
,
L. R.
, and
Huang
,
H. P.
,
1998
, “
NTU Hand: A New Design of Dexterous Hands
,”
ASME J. Mech. Des.
,
120/2
, pp.
282
292
.
22.
Ceglarek
,
D.
,
Shi
,
J.
, and
Wu
,
S. M.
,
1994
, “
A Knowledge-based Diagnosis Approach for the Launch of the Auto-body Assembly Process
,”
ASME J. Eng. Ind.
,
116
/4, pp.
491
499
.
23.
Ceglarek
,
D.
, and
Shi
,
J.
,
1995
, “
Dimensional Variation Reduction for Automotive Body Assembly
,”
Manufacturing Review
,
8/2
, pp.
139
154
.
24.
Thornton
,
A. C.
,
1999
, “
A Mathematical Framework for the Key Characteristic Process
,”
Res. Eng. Des.
11
(
3
), pp.
145
157
.
25.
Ceglarek
,
D.
, and
Shi
,
J.
,
1998
, “
Design Evaluation of Sheet Metal Joints for Dimensional Integrity
,”
ASME J. Manuf. Sci. Eng.
,
120/2
, pp.
452
460
.
26.
Wu, C. F. J., and Hamada, M., 2000, Experiments: Planning, Analysis, and Parameter Design Optimization, John Wiley and Sons.
27.
Dielman, T., 2001, Applied Regression Analysis, Duxbury Thomson Learning.
You do not currently have access to this content.