Efficient, defect-free manufacturing of high-temperature superconducting (HTS) wires and tapes is critical to a variety of defense and electrical power applications. To contribute to the improvement of these manufacturing operations, an analytical and experimental study of the early stages of the multipass rolling process for transforming HTS wires into tapes was conducted. The rolling process was simulated by a three-dimensional (3D) finite element model that uses the Drucker-Prager Cap plasticity model to represent the powder core and a Von-Mises plasticity model with isotropic hardening to represent the silver sheath. The predicted cross-sectional geometry of the tapes is compared with experiments. The results show that the tape cross-sectional geometry and powder core sizes can be predicted accurately. Further, alternate boundary conditions were found to have minimal effect on the predicted cross-sectional geometry for the range of reductions considered, even though the frictional shear stress distributions were significantly different.

1.
Selvamanickam
,
V.
,
Hazelton
,
D. W.
,
Motowidlo
,
L.
,
Krajula
,
F.
,
Hoehn
,
J.
,
Walker
,
M. S.
, and
Haldar
,
P.
,
1998
, “
High-Temperature Superconductors for Electric Power and High-Energy Physics
,”
J. Met.
,
50
(
10
), pp.
27
30
.
2.
Herrmann, P. F., Be´ghin, E., Duperray, G., Grivon, F., Legat, D., Leriche, A., Tavergnier, P. J., Marlin, P., and Parasie, Y., 1998, “Pre-Industrial PIT Conductor and Coil Development at Alcatel,” presented at the Applied Superconductivity Conference, Desert Springs, CA.
3.
Zeng
,
R.
,
Beales
,
T. P.
,
Liu
,
H. K.
, and
Dou
,
S. X.
,
1998
, “
Optimal Reduction in Rolling Ag-Sheathed Bi-2223 Multifilamentary Tapes
,”
Supercond. Sci. Technol.
,
9
, pp.
299
303
.
4.
Yuan
,
D.-W.
,
Majer
,
W. J.
, and
Francarilla
,
T. L.
,
2000
, “
Fabrication of Laminated Bi-2212/Ag Multifilamentary Tape
,”
Supercond. Sci. Technol.
,
13
, pp.
287
290
.
5.
Blumenthal
,
W. R.
,
Zhu
,
Y. T.
,
Lowe
,
T. C.
, and
Asaro
,
R. J.
,
1996
, “
Deformation State Effects on the Jc of BSCCO Tapes
,”
Physica C
,
260
, pp.
33
40
.
6.
Asaro
,
R. J.
,
Ahzi
,
S.
,
Blumenthal
,
W. R.
, and
DiGiovanni
,
A.
,
1992
, “
Mechanical Processing of High Jc BSCCO Superconductors
,”
Philos. Mag. A
,
66
, No.
4
, pp.
517
538
.
7.
Schoenfeld
,
S. E.
,
Ahzi
,
S.
,
Asaro
,
R. J.
, and
Blumenthal
,
W. R.
,
1996
, “
The Bulk Processing of 2223 BSCCO Powders: Part I: Densification and Mechanical Response
,”
Philos. Mag. A
,
73
, No.
6
, pp.
1565
1590
.
8.
Schoenfeld
,
S. E.
,
Asaro
,
R. J.
,
Ahzi
,
S.
,
Bingert
,
J. F.
, and
Willis
,
J. O.
,
1996
, “
The Bulk Processing of 2223 BSCCO Powders: Part II: Tape Rolling
,”
Philos. Mag. A
,
73
, No.
6
, pp.
1591
1620
.
9.
Korzekwa
,
D. A.
,
Bingert
,
J. F.
,
Podtburg
,
E. J.
, and
Miles
,
P.
,
1994
, “
Deformation Processing of Wires and Tapes Using the Oxide-Powder-in-Tube Method
,”
Appl. Supercond.
,
2
, No.
3/4
, pp.
261
270
.
10.
Kovac
,
P.
,
Husek
,
I.
, and
Pachla
,
W.
,
1997
,
IEEE Trans. Appl. Supercond.
,
7
, p.
2098
2098
.
11.
Han
,
Z.
,
Skov-Hansen
,
P.
, and
Freltof
,
T.
,
1997
, “
The Mechanical Deformation of Superconducting BiSrCaCuO/Ag Composites
,”
Supercond. Sci. Technol.
,
10
, pp.
371
387
.
12.
Yuan
,
D.-W.
,
Aesoph
,
M. D.
, and
Kajuch
,
J.
,
1997
, “
Influence of Powder Characteristics on the Green Compacts of Bi-2212 Powders
,”
J. Mater. Res.
,
12
(
1
), pp.
21
27
.
13.
Sengupta
,
S.
,
1998
, “
High-Temperature Superconductors: Synthesis Techniques and Application Requirements
,”
J. Met.
,
50
(
10
), pp.
19
26
.
14.
Yuan, D.-W., Pollock, M. J., and Kajuch, J., 1997, “Effective Fabrication Practices for Ag-Sheathed Bi-2212 Superconductors,” High-Temperature Superconductors: Synthesis, Processing, and Applications II, (Orlando, FL), U. Balachandran and P. J. McGinn, eds., TMS, pp. 35–42.
15.
Yuan
,
D.-W.
, and
Kajuch
,
J.
,
1998
, “
Process Optimization for Ag-Sheathed Bi-2212 Superconductors
,”
J. Supercond.
,
11
(
5
), pp.
569
573
.
16.
Funahashi
,
R.
,
Matsubara
,
I.
,
Ueno
,
K.
, and
Ishikawa
,
H.
,
1999
, “
Mechanism of Bi2Sr2CaCu2Ox Crystallization and Superconducting Properties for Bi2Sr2CaCu2Ox/Ag Tapes Prepared Using Isothermal Partial Melting Method
,”
Physica C
,
311
, pp.
107
121
.
17.
Shivpuri
,
R.
, and
Chou
,
P. C.
,
1989
, “
A Comparative Study of Slab, Upper Bound and Finite Element Methods for Predicting Force and Torque in Cold Rolling
,”
Int. J. Mach. Tools Manuf.
,
29
, pp.
305
322
.
18.
Lee
,
J. D.
,
1998
, “
A Large-Strain Elastic-Plastic Finite Element Analysis of Rolling Process
,”
Comput. Methods Appl. Mech. Eng.
,
161
, pp.
315
347
.
19.
Yuan
,
D.-W.
,
Pollock
,
M. J.
, and
Kajuch
,
J.
,
1997
, “
Drawing of Ag-Clad Bi2Sr2CaCu2O8 Superconductor Wires
,”
Supercond. Sci. Technol.
,
10
, pp.
52
57
.
20.
Tangrila, S., Shah, R., and Rachakonda, S., 1995, “Densification Behavior of BSCCO-2212 Superconducting Powder During the Wire Drawing of Powder-in-Tube (PIT) Samples,” AMD-Vol. 216, Net Shape Processing of Powder Materials, ASME, pp. 129–140.
21.
Pandheeradi, M., 1996, “Modeling the Superconductor Wire Drawing Process,” Bi-2212 High Temperature Superconductor Manufacturing Technology Development Workshop, Concurrent Technologies Corporation, Johnstown, PA.
22.
Kajuch, J., Yuan, D. W., Pandheeradi, M., Pollock, M., Aesoph, M., and Thirukkonda, M., 1997, “Manufacturing Technology of Monofilament Bi-2212 Wires and Tapes,” NCEMT Report.
23.
Hibbitt, Karlsson and Sorensen, Inc., 1997, ABAQUS Theory Manual, Version 5.7.
24.
Hibbitt, H. D., 1984, Nucl. Eng. Des., Vol. 77, pp. 271-297.
25.
Yuan
,
D.-W.
,
Pollock
,
M. J.
, and
Kajuch
,
J.
,
1998
, “
Effect of Rolling on Properties of Monofilamentary Bi-2212 Superconductor Tapes
,”
Physica C
,
302
, pp.
1
9
.
You do not currently have access to this content.