Feeds and speeds for conventional endmilling operations have been empirically investigated and extensively tabulated 1. However, the selection of the geometric cutting parameters, the axial and radial depths of cut, remains an inexact science. Observation of mechanistic process simulation predictions reveal a relatively complex topology resulting from the multiple cutting flutes of conventional endmilling cutters as the axial and radial depths of cut are varied. A partitioning approach is presented that explicitly enumerates the transition events due to the entrance and exit of the individual cutting flutes. The resulting simplified optimization formulation permits selection of the axial and radial depth of cut that most efficiently satisfy critical simulation predictions such as maximum cutting force or form error. Case studies are presented illustrating the application of the method to select the cutting parameters in climb milling. The optimization objective in the case studies is to maximize the material removal rate, subject to the process induced constraints. Results suggest that operating at the extremes of either axial or radial engagement may in various instances be preferable to more conventional combinations of depth and width of cut. Certain regions of the parameter space are observed to be necessarily sub-optimal relative to particular planning constraints, while other regions are found to contain particularly attractive operating points.

1.
Metcut Research Associates, 1980, Machining Data Handbook, 3rd Ed.
2.
Sandstrom, D. R., 1999, “Panel Discussion: Perspective of the Aerospace Industry” at the CIRP International Workshop on Modeling of Machining Operations, held in Atlanta, GA., May 19, 1998.
3.
Gupta, T., and Ghosh, B. K., 1988, “A Survey of Expert Systems in Manufacturing and Process Planning,” Comp. in Ind., Nov., pp. 195–204.
4.
Pham
,
D. T.
, and
Pham
,
P. T.
,
1988
, “
Expert Systems in Mechanical and Manufacturing Engineering
,”
Int. V. Adv. Manuf. Tech.
,
3
(
3
), pp.
3
21
.
5.
Chang, T. C., and Wysk, R. A., 1985, An Introduction to Automated Process Planning Systems. Prentice-Hall.
6.
Chen
,
Z.
, and
Wysk
,
R. A.
,
1992
, “
Integrated System for Selecting Optimum Cutting Speeds and Tool Replacement Times
,”
Int. J. Mach. Tools Manuf.
,
32
, No.
5
, pp.
695
707
.
7.
Balakrishnan, P., and De Vries, M. F., 1992, “A Review of Computerized Machinability Data Base Systems,” Tenth NAMRC Proc., pp. 348–356.
8.
Agapiou
,
J. S.
,
1992a
, “
The Optimization of Machining Operations Based on a Combined Criterion, Part 1: The Use of Combined Objectives in Single-Pass Operations
,”
ASME J. Eng. Ind.
,
114
, pp.
500
513
.
9.
Agapiou
,
J. S.
,
1992b
, “
The Optimization of Machining Operations Based on a Combined Criterion, Part 2: The Algorithm and Applications
,”
ASME J. Eng. Ind.
,
114
, pp.
524
538
.
10.
Hitomi
,
K.
,
1989
, “
Analysis of Optimal Machining Speeds for Automatic Manufacturing
,”
Int. J. Prod. Res.
,
27
, pp.
1685
1691
.
11.
Tan
,
F. P.
, and
Creese
,
R. C.
,
1995
, “
A Generalized Multi-Pass Machining Model for Machining Parameter Selection in Turning
,”
Int. J. Prod. Res.
,
33
(
5
), pp.
1467
1487
.
12.
Koulams
,
C. P.
,
1991
, “
Simultaneous Determination of Optimal Machining Conditions and Tool Replacement Policies in Constrained Machining Economics Problem by Geometric Programming
,”
Int. J. Prod. Res.
,
29
(
12
), pp.
2407
2421
.
13.
Jha
,
N. K.
,
1990
, “
A Discrete Data Base Multiple Objective Optimization of Milling Operation Through Geometric Programming
,”
ASME J. Eng. Ind.
,
112
, p.
368
368
.
14.
Narang
,
R. V.
, and
Fischer
,
G. W.
,
1993
, “
Development of Framework to Automate Process Planning Functions and to Determine Machining Parameters
,”
Int. J. Prod. Res.
,
31
(
8
), pp.
1921
1942
.
15.
Chryssolouris
,
G.
, and
Guillot
,
M.
,
1990
, “
A Comparison of Statistical and AI Approaches to the Selection of Process Parameters in Intelligent Machining
,”
ASME J. Eng. Ind.
,
112
, May, p.
122
122
.
16.
Smith
,
S.
,
Winfough
,
W. R.
, and
Halley
,
J.
,
1998
, “
Effect of Tool Length on Stable Metal Removal Rate in High Speed Milling
,”
CIRP Ann.
,
47
(
1
), pp.
307
310
.
17.
Shaw
,
M. C.
,
Cook
,
N. H.
, and
Smith
,
P. A.
,
1952
, “
The Mechanics of Three-Dimensional Cutting Operations
,”
Trans. ASME
,
74
, pp.
1055
1055
.
18.
Tlusty
,
J.
, and
MacNeil
,
P.
,
1975
, “
Dynamics of Cutting Forces in Endmilling
,”
CIRP Ann.
,
24
(
1
), pp.
21
25
.
19.
Devor R. E., Kline, W. A., and Zdeblick, W. J., 1980, “A Mechanistic Model for the Force System in End Milling with Application to Machining Airframe Structures,” Eighth NAMRC Proc., May, p. 297.
20.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Lindberg
,
J. R.
,
1982
, “
The Prediction of Cutting Forces in End Milling with Application to Cornering Cuts
,”
Int. J. Mach. Tool Des. Res.
,
22
(
1
), pp.
7
22
.
21.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Shareef
,
I. A.
,
1982
, “
The Prediction of Surface Accuracy in End Milling
,”
ASME J. Eng. Ind.
,
104
, p.
272
272
.
22.
Kline
,
W. A.
, and
DeVor
,
R. E.
,
1983
, “
The Effect of Runout on Cutting Geometry and Forces in End Milling
,”
Int. J. Mach. Tool Des. Res.
,
23
(
2/3
), pp.
123
140
.
23.
MTAMRI, 1997, http://mtamri.me.uiuc.edu
24.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
,
40
(
1
), pp.
31
34
.
25.
Elbestawi
,
M. A.
,
Ismail
,
F.
,
Du
,
R.
, and
Ullagaddi
,
B. C.
,
1994
, “
Modeling Machining Dynamics Including Damping in the Tool-Workpiece Interface
,”
ASME J. Eng. Ind.
,
116
, pp.
435
439
.
26.
Shin
,
Y. C.
, and
Waters
,
A. J.
,
1994
, “
Face Milling Process Modeling with Structural Non-Linearity
,”
Trans. of NAMRI
,
22
, pp.
157
163
.
27.
Sutherland
,
J. W.
, and
DeVor
,
R. E.
,
1986
, “
An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems
,”
ASME J. Eng. Ind.
,
108
, May, pp.
269
279
.
28.
Tlusty
,
J.
,
1986
, “
Dynamics of High Speed Milling
,”
ASME J. Eng. Ind.
,
108
, May, pp.
59
67
.
29.
Wu
,
D. W.
, and
Liu
,
C. R.
,
1985
, “
An Analytical Model of Cutting Dynamics. Model Building and Verification
,”
ASME J. Eng. Ind.
,
107
, May, pp.
107
118
.
30.
Ehmann
,
K. F.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Lazoglu
,
I.
,
1997
, “
Machining Process Modelling: A Review
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
655
663
.
31.
Stori
,
J. A.
,
Wright
,
P. K.
, and
King
,
C.
,
1999
, “
Integration of Process Simulation in Machining Parameter Optimization
,”
ASME J. Manuf. Sci. Eng.
,
121
, Feb., pp.
134
143
.
32.
EMSERV, 1997, http://slice.me.uiuc.edu/∼venkat/emserv/emserv.html
33.
Gill, P. E., Murray, W., and Wright, M. H., 1981, Practical Optimization, Academic Press, 1981.
34.
Grove, A., 1990, Optimization Toolbox for Use with MATLAB™, The Mathworks, Inc.
35.
Luenberger, D. G., 1989, Linear and Nonlinear Programming, 2nd, ed., Addison-Wesley.
You do not currently have access to this content.