Abstract

Atomic force microscopy (AFM) serves characterization and actuation in nanoscale applications. We study the stochastic dynamics of an AFM cantilever under tip-sample interactions represented by the Lennard–Jones and Morse potential energy functions. In both cases, we also study the contrasting dynamic effects of additive (external) and multiplicative (internal) noise. Moreover, for multiplicative noise, we study the two sub-cases arising from the Itô and Stratonovich interpretations of stochastic integrals. In each case, we also investigate the stochastic stability of the system by tracing the time evolution of the maximal Lyapunov exponent. Additionally, we obtain stationary probability densities for the unforced dynamics using stochastic averaging.

References

1.
Liu
,
L.
,
Luo
,
Y.
,
Xi
,
N.
,
Wang
,
Y.
,
Zhang
,
J.
, and
Li
,
G.
,
2008
, “
Sensor Referenced Real-Time Videolization of Atomic Force Microscopy for Nanomanipulations
,”
IEEE/ASME Trans. Mechatron.
,
13
(
1
), pp.
76
85
.
2.
Zhang
,
W.
,
Meng
,
G.
,
Zhou
,
J.
, and
Chen
,
J.
,
2009
, “
Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs With Squeeze Film Damping Effects
,”
Sensors
,
9
(
5
), pp.
3854
3874
.
3.
Jalili
,
N.
, and
Laxminarayana
,
K.
,
2004
, “
A Review of Atomic Force Microscopy Imaging Systems: Application to Molecular Metrology and Biological Sciences
,”
Mechatronics
,
14
(
8
), pp.
907
945
.
4.
Basso
,
M.
,
Dahleh
,
M.
,
Mezic
,
I.
, and
Salapaka
,
M.
,
1999
, “
Stochastic Resonance in AFM’s
,”
Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)
,
San Diego CA
,
June 2–4
, Vol.
6
, pp.
3774
3778
.
5.
Raman
,
A.
,
Melcher
,
J.
, and
Tung
,
R.
,
2008
, “
Cantilever Dynamics in Atomic Force Microscopy
,”
Nano Today
,
3
(
1
), pp.
20
27
.
6.
Chakraborty
,
I.
, and
Balachandran
,
B.
,
2011
, “
Off-Resonance Cantilever Dynamics in the Presence of Attractive and Repulsive Tip Interaction Forces
,”
Int. J. Struct. Stab. Dyn.
,
11
(
04
), pp.
603
620
.
7.
Chakraborty
,
I.
, and
Balachandran
,
B.
,
2011
, “
Noise Influenced Elastic Cantilever Dynamics With Nonlinear Tip Interaction Forces
,”
Nonlinear Dyn.
,
66
(
1
), pp.
427
439
.
8.
Basso
,
M.
,
Giarré
,
L.
,
Dahleh
,
M.
, and
Mezić
,
I.
,
1998
, “
Complex Dynamics in a Harmonically Excited Lennard-Jones Oscillator: Microcantilever-Sample Interaction in Scanning Probe Microscopes1
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
1
), pp.
240
245
.
9.
Lee
,
S. I.
,
Howell
,
S. W.
,
Raman
,
A.
, and
Reifenberger
,
R.
,
2002
, “
Nonlinear Dynamics of Microcantilevers in Tapping Mode Atomic Force Microscopy: A Comparison Between Theory and Experiment
,”
Phys. Rev. B
,
66
(
11
), p.
115409
.
10.
Zhang
,
W.-M.
,
Meng
,
G.
, and
Peng
,
Z.-K.
,
2011
, “
Nonlinear Dynamic Analysis of Atomic Force Microscopy Under Bounded Noise Parametric Excitation
,”
IEEE/ASME Trans. Mechatron.
,
16
(
6
), pp.
1063
1072
.
11.
Ashhab
,
M.
,
Salapaka
,
M.
,
Dahleh
,
M.
, and
Mezić
,
I.
,
1999
, “
Dynamical Analysis and Control of Microcantilevers
,”
Automatica
,
35
(
10
), pp.
1663
1670
.
12.
Desai
,
A. M.
,
Mesquita
,
N.
, and
Fernandes
,
V.
,
2020
, “
A New Modified Morse Potential Energy Function for Diatomic Molecules
,”
Phys. Scr.
,
95
(
8
), p.
085401
.
13.
Angelova
,
M.
, and
Hussin
,
V.
,
2008
, “
Generalized and Gaussian Coherent States for the Morse Potential
,”
J. Phys. A: Mathem. Theor.
,
41
(
30
), p.
304016
.
14.
Gardiner
,
C.
,
2009
,
Stochastic Methods
, Vol.
4
,
Springer Berlin
,
Berlin, Germany
.
15.
Oksendal
,
B.
,
2013
,
Stochastic Differential Equations: An Introduction With Applications
,
Springer Science & Business Media
,
Berlin/Heidelberg Germany
.
16.
Müller
,
P. C.
,
1995
, “
Calculation of Lyapunov Exponents for Dynamic Systems With Discontinuities
,”
Chaos Solit. Fract.
,
5
(
9
), pp.
1671
1681
.
17.
Sprott
,
J. C.
,
2003
,
Chaos and Time-Series Analysis
,
Oxford University Press
,
Oxford, UK
.
18.
Soong
,
T. T.
,
1973
,
Random Differential Equations in Science and Engineering
,
Mathematics in Science and Engineering
,
Academic Press
,
New York
.
19.
Ariaratnam
,
S.
,
Tam
,
D.
, and
Xie
,
W.-C.
,
1991
, “
Lyapunov Exponents and Stochastic Stability of Coupled Linear Systems Under White Noise Excitation
,”
Prob. Eng. Mech.
,
6
(
2
), pp.
51
56
.
20.
Grorud
,
A.
, and
Talay
,
D.
,
1996
, “
Approximation of Lyapunov Exponents of Nonlinear Stochastic Differential Equations
,”
SIAM J. Appl. Math.
,
56
(
2
), pp.
627
650
.
21.
Xie
,
W.-C.
, and
Huang
,
Q.
,
2009
, “
Simulation of Moment Lyapunov Exponents for Linear Homogeneous Stochastic Systems
,”
ASME J. Appl. Mech.
,
76
(
3
), p.
031001
.
22.
Xu
,
Y.
,
Gu
,
R.
,
Zhang
,
H.
,
Xu
,
W.
, and
Duan
,
J.
,
2011
, “
Stochastic Bifurcations in a Bistable Duffing–Van Der Pol Oscillator With Colored Noise
,”
Phys. Rev. E
,
83
(
5
), p.
056215
.
23.
Rümelin
,
W.
,
1982
, “
Numerical Treatment of Stochastic Differential Equations
,”
SIAM J. Numer. Anal.
,
19
(
3
), pp.
604
613
.
24.
Hu
,
S.
, and
Raman
,
A.
,
2006
, “
Chaos in Atomic Force Microscopy
,”
Phys. Rev. Lett.
,
96
(
3
), p.
036107
.
You do not currently have access to this content.