Abstract

Most practical automotive problems require the design of experiments (DoEs) over a number of different operating conditions to deliver optimal calibration parameters. DoE is especially crucial for automotive engine calibration problems due to its increasing complexity and nonlinearity. As the complexity of the system increases, the DoE applications require a significant amount of expensive testing. However, only a limited number of testings are available and desired. The current work addresses this issue by presenting an adaptive DoE method based on Bayesian optimization to find optimal parameter settings with a significantly reduced number of physical testings (or function evaluations). To further improve optimization efficiency, this work presents a new approach: concurrent Bayesian optimization, which searches for optimal DoE under multiple operating conditions simultaneously. The method utilizes a surrogate model and a novel concurrent evolutionary multi-objective optimization method: concurrent non-dominated sorting genetic algorithm-II, to solve adaptive DoE in multiple operating conditions with a limited number of function evaluations. The experimental study is carried out on a gasoline engine calibration problem using a high-fidelity GT-SUITE™ engine model. The experimental results demonstrate the effectiveness of the algorithm by optimizing engine performance with a significantly reduced number of expensive testings to achieve accurate optimal solutions. The method simultaneously performs engine calibration at eight different operating conditions using only 500–600 testings, compared to the traditional approach, where each operating condition requires 300–500 testings independently to achieve optimal results.

References

1.
Atkinson
,
C.
, and
Mott
,
G.
,
2005
, “
Dynamic Model-Based Calibration Optimization: An Introduction and Application to Diesel Engines
,” Tech. Rep., SAE Technical Paper.
2.
Norouzi
,
A.
,
Aliramezani
,
M.
, and
Koch
,
C. R.
,
2021
, “
A Correlation-Based Model Order Reduction Approach for a Diesel Engine Nox and Brake Mean Effective Pressure Dynamic Model Using Machine Learning
,”
Int. J. Eng. Res.
,
22
(
8
), pp.
2654
2672
.
3.
Millo
,
F.
,
Arya
,
P.
, and
Mallamo
,
F.
,
2018
, “
Optimization of Automotive Diesel Engine Calibration Using Genetic Algorithm Techniques
,”
Energy
,
158
(
2
), pp.
807
819
.
4.
Janakiraman
,
V. M.
,
Nguyen
,
X.
, and
Assanis
,
D.
,
2016
, “
Stochastic Gradient Based Extreme Learning Machines for Stable Online Learning of Advanced Combustion Engines
,”
Neurocomputing
,
177
(
5
), pp.
304
316
.
5.
Mosbach
,
S.
,
Braumann
,
A.
,
Man
,
P. L.
,
Kastner
,
C. A.
,
Brownbridge
,
G. P.
, and
Kraft
,
M.
,
2012
, “
Iterative Improvement of Bayesian Parameter Estimates for an Engine Model by Means of Experimental Design
,”
Combust. Flame
,
159
(
3
), pp.
1303
1313
.
6.
Kianifar
,
M. R.
,
Campean
,
L. F.
, and
Richardson
,
D.
,
2013
, “
Sequential DoE Framework for Steady State Model Based Calibration
,”
SAE Int. J. Engines
,
6
(
2
), pp.
843
855
.
7.
Zaglauer
,
S.
, and
Knoll
,
U.
,
2012
, “
Evolutionary Algorithms for the Automatic Calibration of Simulation Models for the Virtual Engine Application
,”
IFAC Proc. Vol.
,
45
(
2
), pp.
177
181
.
8.
Tayarani
,
N. M. H.
,
Yao
,
X.
, and
Xu
,
H.
,
2015
, “
Meta-Heuristic Algorithms in Car Engine Design: A Literature Survey
,”
IEEE Trans. Evol. Comput.
,
19
(
5
), pp.
609
629
.
9.
Yu
,
X.
,
Zhu
,
L.
,
Wang
,
Y.
,
Filev
,
D.
, and
Yao
,
X.
,
2022
, “
Internal Combustion Engine Calibration Using Optimization Algorithms
,”
Appl. Energy
,
305
, p.
117894
.
10.
Yu
,
X.
,
Yao
,
X.
,
Wang
,
Y.
,
Zhu
,
L.
, and
Filev
,
D.
,
2019
, “
Domination-Based Ordinal Regression for Expensive Multi-Objective Optimization
,”
2019 IEEE Symposium Series on Computational Intelligence (SSCI)
,
Xiamen, China
,
Dec. 6–9
, IEEE, pp.
2058
2065
.
11.
Pal
,
A.
,
Zhu
,
L.
,
Wang
,
Y.
, and
Zhu
,
G. G.
,
2020
, “
Multi-Objective Stochastic Bayesian Optimization for Iterative Engine Calibration
,”
2020 American Control Conference (ACC)
,
Denver, CO
,
July 1–3
.
12.
Pal
,
A.
,
Wang
,
Y.
,
Zhu
,
L.
, and
Zhu
,
G. G.
,
2019
, “
Engine Calibration Optimization Based on Its Surrogate Models
,”
Dynamic Systems and Control Conference
,
Park City, UT
,
Oct. 8–11
, Vol. 59155, American Society of Mechanical Engineers, p. V002T12A002.
13.
Wong
,
P. K.
,
Gao
,
X. H.
,
Wong
,
K. I.
, and
Vong
,
C. M.
,
2018
, “
Online Extreme Learning Machine Based Modeling and Optimization for Point-by-Point Engine Calibration
,”
Neurocomputing
,
277
, pp.
187
197
.
14.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
15.
Mockus
,
J.
,
1994
, “
Application of Bayesian Approach to Numerical Methods of Global and Stochastic Optimization
,”
J. Global Optim.
,
4
(
4
), pp.
347
365
.
16.
Østergård
,
T.
,
Jensen
,
R. L.
, and
Maagaard
,
S. E.
,
2018
, “
A Comparison of Six Metamodeling Techniques Applied to Building Performance Simulations
,”
Appl. Energy
,
211
, pp.
89
103
.
17.
Lei
,
B.
,
Kirk
,
T. Q.
,
Bhattacharya
,
A.
,
Pati
,
D.
,
Qian
,
X.
,
Arroyave
,
R.
, and
Mallick
,
B. K.
,
2021
, “
Bayesian Optimization With Adaptive Surrogate Models for Automated Experimental Design
,”
npj Comput. Mater.
,
7
(
1
), p.
194
.
18.
Pal
,
A.
,
Wang
,
Y.
,
Zhu
,
L.
, and
Zhu
,
G. G.
,
2021
, “
Multi-Objective Surrogate-Assisted Stochastic Optimization for Engine Calibration
,”
J. Dyn. Syst. Meas. Control
,
143
(
10
), p.
101004
.
19.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
, Vol. 2,
MIT Press
,
Cambridge, MA
.
20.
Ankenman
,
B.
,
Nelson
,
B. L.
, and
Staum
,
J.
,
2010
, “
Stochastic Kriging for Simulation Metamodeling
,”
Oper. Res.
,
58
(
2
), pp.
371
382
.
21.
Pal
,
A.
,
Zhu
,
L.
,
Wang
,
Y.
, and
Zhu
,
G.
,
2021
, “
Constrained Surrogate-Based Engine Calibration Using Lower Confidence Bound
,”
IEEE/ASME Trans. Mechatron.
,
26
(
6
), pp.
3116
3127
.
22.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
23.
Deb
,
K.
,
2000
, “
An Efficient Constraint Handling Method for Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
186
(
2–4
), pp.
311
338
.
24.
Deb
,
K.
,
Zhu
,
L.
, and
Kulkarni
,
S.
,
2017
, “
Handling Multiple Scenarios in Evolutionary Multiobjective Numerical Optimization
,”
IEEE Trans. Evol. Comput.
,
22
(
6
), pp.
920
933
.
25.
Zhu
,
L.
,
Deb
,
K.
, and
Kulkarni
,
S.
,
2014
, “
Multi-Scenario Optimization Using Multi-Criterion Methods: A Case Study on Byzantine Agreement Problem
,”
IEEE Congress on Evolutionary Computation (CEC)
,
Beijing, China
,
July 6–11
, IEEE, pp.
2601
2608
.
26.
Gamma Technologies, GT-Suite Software
.
27.
Nielsen
,
H. B.
,
Lophaven
,
S. N.
, and
Søndergaard
,
J.
,
2002
,
DACE—A Matlab Kriging Toolbox
.
28.
Deb
,
K.
, and
Agrawal
,
R. B.
,
1995
, “
Simulated Binary Crossover for Continuous Search Space
,”
Complex Syst.
,
9
(
2
), pp.
115
148
.
29.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
, Vol.
16
,
John Wiley & Sons
,
New York
.
30.
Zhu
,
L.
,
Wang
,
Y.
,
Pal
,
A.
, and
Zhu
,
G.
,
2020
, “
Engine Calibration Using Global Optimization Methods With Customization
,” Tech. Rep., SAE Technical Paper.
You do not currently have access to this content.