Abstract

Al-alloy (Al-5 wt. %Zn and Al-5 wt. %Si) nanoparticle dispersed (0.01 − 2.00 vol. %) ethylene glycol based nanofluids are prepared by a two-step process. Prior to dispersing in ethylene glycol by magnetic stirring and ultrasonication the Al-alloy nanoparticles synthesized by mechanical alloying are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) to analyze the identity, size, shape, and purity of the powder. A maximum thermal conductivity enhancement of 16 % for Al-5 wt. %Zn and 13 % for Al-5 wt. %Si dispersed nanofluids are observed at 0.1 vol. % of nanoparticle concentrations. Rheological studies of nanofluids show interesting findings as the viscosity of both types of nanofluids are observed to exhibit values lower than that of base fluid at lower concentrations and higher at higher concentrations. Maximum enhancement of viscosity up to 180 % for Al-5 wt. %Si and 120 % for Al-5 wt. %Zn dispersed nanofluids are observed at 2.0 vol. % concentration.

References

1.
Choi
,
S. U. S.
,
Developments and Applications of Non-Newtonian Flows
edited by
D. A.
Siginer
and
H. P.
Wang
,
ASME
,
NY
, FED231/MD-66;
1995
: 99.
2.
Anoop
,
K. B.
,
Kabelac
,
S.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, “
Rheological and flow characteristics of nanofluids: Influence of electroviscous effects and particle agglomeration
,”
J. Appl. Phys.
, Vol.
106
,
2009
, p. 034909. https://doi.org/10.1063/1.3182807
3.
Wang
,
X -Q.
and
Mujumdar
,
A. S.
, “
Heat transfer characteristics of nanofluids: A review
,”
Int. J. Therm. Sci.
, Vol.
46
,
2007
, pp.
1
19
. https://doi.org/10.1016/j.ijthermalsci.2006.06.010
4.
Daungthongsuk
,
W.
and
Wongwises
,
S.
, “
A critical review of convective heat transfer of nanofluids
,”
Renewable Sustainable Energy Rev.
, Vol.
11
,
2007
, pp.
797
817
. https://doi.org/10.1016/j.rser.2005.06.005
5.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, “
Thermophysical and electrokinetic properties of nanofluids – A critical review
,”
Appl. Therm. Eng.
, Vol.
28
,
2008
, pp.
2109
2125
. https://doi.org/10.1016/j.applthermaleng.2008.01.005
6.
Yu
,
W.
,
France
,
D. M.
,
Routbort
,
J. L.
, and
Choi
,
S. U. S.
, “
Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,”
Heat Transfer Eng.
, Vol.
29
(
5
),
2008
, pp.
432
460
. https://doi.org/10.1080/01457630701850851
7.
Choi
,
S. U. S.
, “
Nanofluids: From Vision to Reality Through Research
,”
J. Heat Transfer
, Vol.
131
,
2009
, p. 033106. https://doi.org/10.1115/1.3056479
8.
Wen
,
D.
,
Lin
,
G.
,
Vafaei
,
S.
, and
Zhang
,
K.
, “
Review of nanofluids for heat transfer applications
,”
Particuol.
, Vol.
7
,
2009
, pp.
141
150
. https://doi.org/10.1016/j.partic.2009.01.007
9.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
, Vol.
121
,
1999
, pp.
280
289
. https://doi.org/10.1115/1.2825978
10.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S.U.S.
, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
, Vol.
13
,
1999
, pp.
474
480
. https://doi.org/10.2514/2.6486
11.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
and
Grulke
,
E. A.
, “
Anomalously Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
, Vol.
79
,
2001
, pp.
2252
2254
. https://doi.org/10.1063/1.1408272
12.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, “
Anomalously Increased Effective Thermal Conductivity of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
, Vol.
78
,
2001
, pp.
718
720
. https://doi.org/10.1063/1.1341218
13.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
, and
Liu
,
Y.
, “
Thermal Conductivity of Suspensions Containing Nanosized SiC Particles
,”
Int. J. Thermophys.
, Vol.
23
,
2002
, pp.
571
580
. https://doi.org/10.1023/A:1015121805842
14.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
, and
Ai
,
F.
, “
Thermal Conductivity Enhancement of Suspensions Containing Nano sized Alumina Particles
,”
J. Appl. Phys.
, Vol.
91
,
2002
, pp.
4568
4572
. https://doi.org/10.1063/1.1454184
15.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
, Vol.
125
,
2003
, pp.
567
574
. https://doi.org/10.1115/1.1571080
16.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
, Vol.
34
(
1
),
2004
, pp.
219
246
. https://doi.org/10.1146/annurev.matsci.34.052803.090621
17.
Assael
,
M. J.
,
Metaxa
,
I. N.
,
Arvanitidis
,
J.
,
Christofilos
,
D.
, and
Lioutas
,
C.
, “
Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Present of Two Different Dispersants
,”
Int. J. Thermophys.
, Vol.
26
,
2005
, pp.
647
664
. https://doi.org/10.1007/s10765-005-5569-3
18.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, “
Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids
,”
Int. J. Therm. Sci.
, Vol.
44
,
2005
, pp.
367
373
. https://doi.org/10.1016/j.ijthermalsci.2004.12.005
19.
Liu
,
M.
,
Lin
,
M.
,
Tsai
,
C. Y.
, and
Wang
,
C.
, “
Enhancement of Thermal Conductivity with Cu for Nanofluids Using Chemical Reduction Method
,”
Int. J. Heat Mass Transfer
, Vol.
49
,
2006
, pp.
3028
3033
. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.012
20.
Putnam
,
S. A.
,
Cahill
,
D. G.
,
Braun
,
P. V.
,
Ge
,
Z.
, and
Shimmin
,
R. G.
, “
Thermal Conductivity of Nanoparticle Suspensions
,”
J. Appl. Phys.
, Vol.
99
,
2006
, p. 084308. https://doi.org/10.1063/1.2189933
21.
Chopkar
,
M.
,
Das
,
P. K.
, and
Manna
,
I.
, “
Synthesis and characterization of nanofluid for advanced heat transfer applications
,”
Scr. Mater.
, Vol.
55
,
2006
, pp.
549
552
. https://doi.org/10.1016/j.scriptamat.2006.05.030
22.
Philip
,
J.
,
Shima
,
P. D.
, and
Raj
,
B.
, “
Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures
,”
Appl. Phys. Lett.
, Vol.
91
,
2007
, pp. 203108. https://doi.org/10.1063/1.2812699
23.
Chopkar
,
M.
,
Kumar
,
S.
,
Bhandari
,
D. R.
,
Das
,
P. K.
, and
Manna
,
I.
, “
Development and characterization of Al2Cu and Ag2Al nanoparticle dispersed water and ethylene glycol based nanofluid
,”
Mater. Sci. Eng., B
, Vol.
139
,
2007
, pp.
141
148
. https://doi.org/10.1016/j.mseb.2007.01.048
24.
Karthikeyan
,
N. R.
,
Philip
,
J.
, and
Raj
,
B.
, “
Effect of clustering on the thermal conductivity of nanofluids
,”
Mater. Chem. Phys.
, Vol.
109
,
2008
, pp.
50
55
. https://doi.org/10.1016/j.matchemphys.2007.10.029
25.
Choi
,
C.
,
Yoo
,
H. S.
, and
Oh
,
J. M.
, “
Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants
,”
Curr. Appl. Phys.
, Vol.
8
,
2008
, pp.
710
712
. https://doi.org/10.1016/j.cap.2007.04.060
26.
Jha
,
N.
, and
Ramaprabhu
,
S.
, “
Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids
,”
J. Appl. Phys.
, Vol.
106
,
2009
, pp. 084317. https://doi.org/10.1063/1.3240307
27.
Shima
,
P. D.
,
Philip
,
J.
, and
Raj
,
B.
, “
Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids
,”
Appl. Phys. Lett.
, Vol.
94
,
2009
, p. 223101. https://doi.org/10.1063/1.3147855
28.
Jiang
,
W.
,
Ding
,
G.
, and
Peng
,
H.
, “
Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants
,”
Int. J. Therm. Sci.
, Vol.
48
,
2009
, pp.
1108
1115
. https://doi.org/10.1016/j.ijthermalsci.2008.11.012
29.
Paul
,
G.
,
Pal
,
T.
, and
Manna
,
I.
, “
Thermo-physical property measurement of nano-gold dispersed water based nanofluids prepared by chemical precipitation technique
,”
J. Colloid Interface Sci.
, Vol.
349
,
2010
, pp.
434
437
. https://doi.org/10.1016/j.jcis.2010.05.086
30.
Maxwell
,
J. C.
,
Treatise on Electricity and Magnetism
,
Clarendon
,
Oxford
,
1873
.
31.
Hamilton
,
R. L.
and
Crosser
,
O. K.
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
, Vol.
1
(
3
),
1962
, pp.
187
191
. https://doi.org/10.1021/i160003a005
32.
Davis
,
R. H.
, “
The effective thermal conductivity of a composite material with spherical inclusions
,”
Int. J. Thermophys.
, Vol.
7
,
1986
, pp.
609
620
. https://doi.org/10.1007/BF00502394
33.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, “
Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)
,”
Int. J. Heat Mass Transfer
, Vol.
45
,
2002
, pp.
855
863
. https://doi.org/10.1016/S0017-9310(01)00175-2
34.
Yu
,
W.
and
Choi
,
S. U. S.
, “
The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model
,”
J. Nanopart. Res.
, Vol.
6
,
2004
, pp.
355
361
. https://doi.org/10.1007/s11051-004-2601-7
35.
Feng
,
Y.
,
Yu
,
B.
,
Xu
,
P.
, and
Zou
,
M.
, “
The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles
,”
J. Phys. D: Appl. Phys.
, Vol.
40
,
2007
, pp.
3164
3171
. https://doi.org/10.1088/0022-3727/40/10/020
36.
Bhattacharya
,
P.
,
Saha
,
S. K.
,
Yadav
,
A.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
, “
Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids
,”
J. Appl. Phys.
, Vol.
95
(
11
),
2004
, pp.
6492
6494
. https://doi.org/10.1063/1.1736319
37.
Shukla
,
R. K.
and
Dhir
,
V. K.
, “
Effect of Brownian Motion on Thermal Conductivity of Nanofluids
,”
J. Heat Transfer
, Vol.
130
,
2008
, p. 042406. https://doi.org/10.1115/1.2818768
38.
Prasher
,
R.
,
Song
,
D.
, and
Wang
,
J.
, “
Measurements of nanofluid viscosity and its implications for thermal applications
,”
Appl. Phys. Lett.
, Vol.
89
,
2006
, p. 133108. https://doi.org/10.1063/1.2356113
39.
Chen
,
H.
,
Ding
,
Y.
, and
Tan
,
C.
, “
Rheological behaviour of nanofluids
,”
New J. Phys.
, Vol.
9
,
2007
, pp. 367(
1–25
). https://doi.org/10.1088/1367-2630/9/10/367
40.
Jang
,
S. P.
,
Lee
,
J.-H.
, and
Hwang
,
K. S.
, “
Particle concentration and tube size dependence of viscosities of Al2O3-water nanofluids flowing through micro- and minitubes
,”
Appl. Phys. Lett.
, Vol.
91
,
2007
, p. 243112. https://doi.org/10.1063/1.2824393
41.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Maré
,
T.
,
Boucher
,
S.
, and
Mintsa
,
H. A.
, “
Temperature and particle-size dependent viscosity data for water-based nanofluids – Hysteresis phenomenon
,”
Int. J. Heat Fluid Flow
, Vol.
28
,
2007
, pp.
1492
1506
. https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004
42.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, “
Investigations of thermal conductivity and viscosity of nanofluids
,”
Int. J. Therm. Sci.
, Vol.
47
,
2008
, pp.
560
568
. https://doi.org/10.1016/j.ijthermalsci.2007.05.004
43.
Chen
,
H.
,
Ding
,
Y.
, and
Lapkin
,
A.
, “
Rheological behaviour of nanofluids containing tube / rod-like nanoparticles
,”
Powder Technol.
Vol.
194
,
2009
, pp.
132
141
. https://doi.org/10.1016/j.powtec.2009.03.038
44.
Gleiter
,
H.
,
Nanocryst. Mater., Prog. Mater. Sci.
, Vol.
33
(
4
),
1989
, pp.
223
315
. https://doi.org/10.1016/0079-6425(89)90001-7
45.
Vives
,
S.
,
Gaffet
,
E.
, and
Meunier
,
C.
, “
X-ray diffraction line profile analysis of iron ball milled powders
,”
Mater. Sci. Eng. A
, Vol.
366
,
2004
, pp.
229
238
. https://doi.org/10.1016/S0921-5093(03)00572-0
46.
Savosta
,
M. M.
,
Krivoruchko
,
V. N.
,
Danilenko
,
I. A.
,
Tarenkov
,
V. Y.
,
Konstantinova
,
T. E.
,
Borodin
,
A. V.
, and
Varyukhin
,
V. N.
, “
Nuclear spin dynamics and magnetic structure of nanosized particles of La0.7Sr0.3MnO3
,”
Phys. Rev. B
, Vol.
69
,
2004
, p. 024413. https://doi.org/10.1103/PhysRevB.69.024413
47.
Paul
,
G.
,
Philip
,
J.
,
Raj
,
B.
,
Das
,
P. K.
, and
Manna
,
I.
, “
Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process
,”
Int. J. Heat Mass Transfer
, Vol.
54
,
2011
, pp.
3783
3788
. https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.044
48.
Beck
,
M. P.
,
Yuan
,
Y.
,
Warrier
,
P.
, and
Teja
,
A. S.
, “
The effect of particle size on the thermal conductivity of alumina nanofluids
,”
J. Nanopart. Res.
, Vol.
11
,
2009
, pp.
1129
1136
. https://doi.org/10.1007/s11051-008-9500-2
49.
Paul
,
G.
,
Sarkar
,
S.
,
Pal
,
T.
,
Das
,
P. K.
, and
Manna
,
I.
, “
Concentration and size dependence of nano-silver dispersed water based nanofluids
,”
J. Colloid Interface Sci.
, Vol.
371
,
2012
, pp.
20
27
. https://doi.org/10.1016/j.jcis.2011.11.057
50.
Pastoriza-Gallego
,
M. J.
,
Lugo
,
L.
,
Legido
J. L.
, and
Piñeiro
,
M. M.
, “
Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids
,”
Nanoscale Res. Lett.
, Vol.
6
,
2011
, pp.
560
567
. https://doi.org/10.1186/1556-276X-6-560
51.
Chen
,
L.
,
Xie
,
H.
,
Li
,
Y.
, and
Yu
,
W.
, “
Nanofluids containing carbon nanotubes treated by mechanochemical reaction
,”
Thermochim. Acta
, Vol.
477
,
2008
, pp.
21
24
. https://doi.org/10.1016/j.tca.2008.08.001
52.
Wang
,
B.
,
Wang
,
X.
,
Lou
,
W.
, and
Hao
,
J.
, “
Rheological and Tribological Properties of Ionic Liquid-Based Nanofluids Containing Functionalized Multi-Walled Carbon Nanotubes
,”
J. Phys. Chem. C
, Vol.
114
,
2010
, pp.
8749
8754
. https://doi.org/10.1021/jp1005346
This content is only available via PDF.
You do not currently have access to this content.