Abstract

The biodiesel production from alkali-catalyzed transesterification of karanja oil was investigated. In this study, the effect of three parameters, i.e., reaction temperature, catalyst concentration, and molar ratio of methanol to oil on biodiesel yield was studied. Central composite design (CCD) along with response surface methodology (RSM) was used for designing experiments and estimating the quadratic response surface. Catalyst concentration was found to have a negative effect on biodiesel yield, whereas molar ratio showed positive effect. Temperature and molar ratio showed significant interaction effect. The reaction conditions were optimized for maximum response, i.e., biodiesel yield from RSM. The program for the RSM model, coupled with genetic algorithm (GA), was developed for predicting the optimized process parameters for maximum biodiesel yield to obtain a global optimal solution. The results were found to be similar from both of the methods.

References

1.
Demirbas
,
A.
, “
Competitive Liquid Biofuels from Biomass
,”
Appl. Energy
, Vol.
88
,
2011
, pp.
17
28
. https://doi.org/10.1016/j.apenergy.2010.07.016
2.
Requena
,
J. F. S.
,
Guimaraes
,
A. C.
,
Alpera
,
S. Q.
,
Gangas
,
E. R.
,
Navarro
,
S. H.
,
Gracia
,
L. M. N.
,
Gil
,
J. M.
, and
Cuesta
,
H. F.
, “
Life Cycle Assessment (LCA) of the Biofuels Production Process from Sunflower Oil, Rapeseed Oil and Soybean Oil
,”
Fuel Proc. Technol.
, Vol.
92
,
2011
, pp.
190
199
. https://doi.org/10.1016/j.fuproc.2010.03.004
3.
Romano
,
S. D.
and
Sorichetti
,
P. A.
, “
Dielectric Spectroscopy in Biodiesel Production and Characterization
,”
Green Energy and Technology
,
Springer-Verlag
,
London
,
2011
.
4.
Vyas
,
A. P.
,
Subrahmanyam
,
N.
, and
Patel
,
P. A.
, “
Production of Biodiesel through Transesterification of Jatropha Oil using KNO3/Al2O3 Solid Catalyst
,”
Fuel
, Vol.
88
,
2009
, pp.
625
628
. https://doi.org/10.1016/j.fuel.2008.10.033
5.
Yuste
,
A. J.
and
Dorado
,
M. P.
, “
A Neural Network Approach to Simulate Biodiesel Production from Waste Olive Oil
,”
Energy Fuels
, Vol.
20
,
2006
, pp.
399
402
. https://doi.org/10.1021/ef050226t
6.
Central Composite Design
,” http://en.wikipedia.org/wiki/Central_composite_design (Last accessed May 10,
2012
).
7.
Zhang
,
J.
,
Chen
,
S.
,
Yang
,
R.
, and
Yan
,
Y.
, “
Biodiesel Production from Vegetable Oil Using Heterogeneous Acid and Alkali Catalyst
,”
Fuel
, Vol.
89
,
2010
, pp.
2939
2944
. https://doi.org/10.1016/j.fuel.2010.05.009
8.
Vicente
,
G.
,
Martinez
,
M.
, and
Aracil
,
J.
, “
Optimization of Integrated Biodiesel Production. Part I: A Study of the Biodiesel Purity and Yield
,”
Biores. Technol.
, Vol.
98
,
2007
, pp.
1724
1733
. https://doi.org/10.1016/j.biortech.2006.07.024
9.
Vicente
,
G.
,
Martinez
,
M.
, and
Aracil
,
J.
, “
Optimization of Integrated Biodiesel Production. Part II: A Study of the Material Balance
,”
Biores. Technol.
, Vol.
98
,
2007
, pp.
1754
1761
. https://doi.org/10.1016/j.biortech.2006.07.023
10.
Liu
,
S.
,
Wang
,
Y.
,
Oh
,
J. H.
, and
Herring
,
J. L.
, “
Fast Biodiesel Production from Beef Tallow with Radio Frequency Heating
,”
Renewable Energy
, Vol.
36
,
2011
, pp.
1003
1007
. https://doi.org/10.1016/j.renene.2010.09.015
11.
Reddy
,
B. S.
,
Kumar
,
J. S.
,
Reddy
,
V. K.
, and
Kumari
,
A.
, “
Application of Taguchi and Response Surface Methodology for Biodiesel Production from Alkali Catalyzed Transesterification of Waste Cooking Oil
,” http://www.thefreelibrary.com/Application of Taguchi and response surface methodology for biodiesel...-a0216182261 (Last accessed May 10,
2012
).
12.
Ghadge
,
S. V.
and
Raheman
,
H.
, “
Process Optimization for Biodiesel Production from Mahua (Madhuca Indica) Oil Using Response Surface Methodology
,”
Biores. Technol.
, Vol.
97
,
2006
, pp.
379
384
. https://doi.org/10.1016/j.biortech.2005.03.014
13.
Sheih
,
C. J.
,
Liao
,
H. F.
, and
Lee
,
C. C.
, “
Optimization of Lipase-Catalyzed Biodiesel by Response Surface Methodology
,”
Biores. Technol.
, Vol.
88
,
2003
, pp.
103
106
. https://doi.org/10.1016/S0960-8524(02)00292-4
14.
Yuan
,
X.
,
Liu
,
J.
,
Zeng
,
G.
,
Shi
,
J.
,
Tong
,
J.
, and
Huang
,
G.
, “
Optimization of Waste Rapeseed Oil with High FFA to Biodiesel Using Response Surface Methodology
,”
Renewable Energy
, Vol.
33
,
2008
, pp.
1678
1684
. https://doi.org/10.1016/j.renene.2007.09.007
15.
Jeong
,
G. T.
and
Park
,
D. H.
, “
Optimization of Biodiesel Production from Castor Oil Using Response Surface Methodology
,”
Appl. Biochem. Biotechnol.
, Vol.
156
,
2009
, pp.
431
441
. https://doi.org/10.1007/s12010-008-8468-9
16.
Gen
,
M.
and
Cheng
,
R.
,
Genetic Algorithms and Engineering Design
,
John Wiley & Sons
,
New York
,
1997
.
17.
Rajendra
,
M.
,
Jena
,
P. C.
, and
Raheman
H.
, “
Prediction of Optimized Pretreatment Process Parameters for Biodiesel Production Using ANN and GA
,”
Fuel
, Vol.
88
,
2009
, pp,
868
875
. https://doi.org/10.1016/j.fuel.2008.12.008
18.
Meher
,
L. C.
,
Dharmagadda
,
V. S. S.
, and
Naik
,
S. N.
, “
Optimization of Alkali-Catalyzed Transesterification of Pongamia Pinnata Oil for Production of Biodiesel
,”
Biores. Technol.
, Vol.
97
,
2006
, pp.
1392
1397
. https://doi.org/10.1016/j.biortech.2005.07.003
19.
ASTM D6751
, “
Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels
,”
Annual Book of ASTM Standards
, Vol. 05.03,
ASTM International
,
West Conshohocken, PA
.
20.
DIN 51750-1 and DIN 51750-2, 2003, “Automotive fuels - Fatty Acid Methyl Esters (FAME) for Diesel Engines—Requirements and Test Methods,” DIN Deutsches Institut für Normung e. V., Berlin, Germany.
This content is only available via PDF.
You do not currently have access to this content.