Abstract

This paper presents the experimental outcome of a study of the pool boiling heat transfer characteristics of alumina and CuO nanofluid in distilled water using a 0.19 mm diameter NiCr wire. A series of experiments were conducted in order to visualize the flow, critical heat flux (CHF) enhancement, and transient characteristics of nanofluid. The boiling phenomenon was visualized using a 0.1 g/l concentration of alumina nanofluid. The average bubble diameter was measured and was found to increase with increased heat flux. The average bubble contact angle decreased from 69° during the initial stages of boiling to 33° at CHF. Massive vapour bubbles were observed on the test heater surface near the CHF, inducing vapour blankets and forming hot/dry spots. The increase in the CHF could be well explained by the hot/dry spot theory. Pool boiling experiments conducted using low volume concentrations of CuO-water nanofluid at atmospheric pressure in distilled water showed an increase in the CHF by 30 % at a 0.3 g/l concentration. The transient behaviour of nanofluid, examined by exposing the heater surface at a constant heat flux of 700 kW/m2, indicated CHF enhancement of 5.21 % to 6.77 % for the two time durations. Based on the experimental investigations, it was concluded that the CHF enhancement is due to nanoparticle coating, which changes the thickness of the surface as a function of time and surface wettability and corroborates the hot/dry spot theory.

References

1.
Choi
,
S. U. S.
, “
Enhancing Thermal Conductivity of Fluids with Nanoparticles
,”
American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 231
, Vol.
66
,
1995
, pp.
99
105
.
2.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
, Vol.
84
,
2004
, pp.
4316
4318
. https://doi.org/10.1063/1.1756684
3.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
Mckrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Ga
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M. S. H. K.
,
Iorio
,
C. S.
,
Pil Jang
,
S.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Geok Kieng
,
L.
,
Kim
,
C.
,
Kim
,
J.
,
Kim
,
S.
,
Hyun Lee
,
S.
,
Choong Leong
,
K.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.
,
Zhao
,
X.
, and
Zhou
,
S.
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
, Vol.
106
(
9
),
2009
, 094312. https://doi.org/10.1063/1.3245330
4.
Godson
,
L.
,
Raja
,
B.
,
Mohan Lal
,
D.
, and
Wongwises
,
S.
, “
Experimental Investigation on the Thermal Conductivity and Viscosity of Silver-deionized Water Nanofluid
,”
Exp. Heat Transfer
, Vol.
23
,
2010
, pp.
317
332
. https://doi.org/10.1080/08916150903564796
5.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
, “
Natural Convection of Nanofluids
,”
Heat Mass Transfer
, Vol.
39
,
2003
, pp.
775
784
. https://doi.org/10.1007/s00231-002-0382-z
6.
Heris
,
S. Z.
,
Esfahany
,
N. M.
, and
Etemad
,
S. G.
, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
, Vol.
28
,
2007
, pp.
203
210
. https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001
7.
Raisee
,
M.
, and
Moghaddami
,
M.
, “
Numerical Investigation of Laminar Forced Convection of Nanofluids through Circular Pipes
,”
J. Enhanced Heat Transfer
, Vol.
15
,
2008
, pp.
335
350
. https://doi.org/10.1615/JEnhHeatTransf.v15.i4.60
8.
Hwang
,
K. S.
,
Jang
,
S. P.
, and
Choi
,
S. U. S.
, “
Flow and Convective Heat Transfer Characteristics of Water-based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
, Vol.
52
,
2009
, pp.
193
199
. https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.032
9.
Rea
,
U.
,
McKrell
,
T.
,
Hu
,
L.
, and
Buongiorno
,
J.
, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina-water and Zirconia-water Nanofluids
,”
Int. J. Heat Mass Transfer
, Vol.
52
,
2009
, pp.
2042
2048
. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.025
10.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, “
Pool Boiling Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
, Vol.
46
,
2003
, pp.
851
862
. https://doi.org/10.1016/S0017-9310(02)00348-4
11.
Vassallo
,
P.
,
Kumar
,
R.
, and
Amico
,
S. D.
, “
Pool Boiling Heat Transfer Experiments in Silica-water Nanofluids
,”
Int. J. Heat Mass Transfer
, Vol.
47
,
2004
, pp.
407
411
. https://doi.org/10.1016/S0017-9310(03)00361-2
12.
Liu
,
Z.
and
Liao
,
L.
, “
Sorption and Agglutination Phenomenon of Nanofluids on a Plain Heating Surface during Pool Boiling
,”
Int. J. Heat Mass Transfer
, Vol.
48
,
2005
, pp.
2407
2419
. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047
13.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M.
, “
Experimental Study on CHF Characteristics of Water-TiO2 Nanofluids
,”
Nuclear Engineering and Technology
, Vol.
28
(
1
),
2006
, pp.
61
68
.
14.
Kim
,
H.
and
Kim
,
M.
, “
Experimental Study of Characteristics and Mechanism of Pool Boiling CHF Enhancement Using Nanofluids
,”
Heat Mass Transfer
, Vol.
45
(
7
),
2007
, pp.
991
998
. https://doi.org/10.1007/s00231-007-0318-8
15.
Chun
,
B. H.
,
Kang
,
H. U.
, and
Kim
,
S. H.
, “
Effect of Alumina Nanoparticles in the Fluid on Heat Transfer in Double-pipe Heat Exchanger System
,”
Korean J. Chem. Eng.
, Vol.
25
(
5
),
2008
, pp.
966
971
. https://doi.org/10.1007/s11814-008-0156-5
16.
Bang
,
I. C.
and
Chang
,
S. H.
, “
Boiling Heat Transfer Performance and Phenomena of Al2O3-water Nanofluids from a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
, Vol.
48
,
2005
, pp.
2407
2419
. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047
17.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspension
,”
Appl. Phys. Lett.
, Vol.
79
,
2001
, pp.
2252
2254
. https://doi.org/10.1063/1.1408272
18.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thomson
,
L. J.
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
, Vol.
78
,
2001
, pp.
718
720
. https://doi.org/10.1063/1.1341218
19.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, “
Mechanisms of Heat Flow in Suspensions of Nano-sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
, Vol.
45
,
2002
, pp.
855
863
. https://doi.org/10.1016/S0017-9310(01)00175-2
20.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
J. Heat Transfer
, Vol.
125
,
2003
, pp.
567
574
. https://doi.org/10.1115/1.1571080
21.
Das
,
S. K.
,
Process Heat Transfer
,
Narosa
,
New Delhi, India
,
2005
, pp.
420
514
.
22.
Janusz
,
T.
,
Tomasz
,
C.
, and
Kaczmarczyk
,
Z.
, “
Pool Boiling of Water-Al2O3 and Water-Cu Nanofluids on Horizontal Smooth Tubes
,”
Nanoscale Res. Lett.
, Vol.
6
,
2010
, p. 220.
23.
Ramakrishna
,
N. H.
,
Reddy
,
R. P.
, and
Shrikantha
,
S. R.
, “
Behavioral Study of Alumina Nanoparticles in Pool Boiling Heat Transfer on a Vertical Surface
,”
Heat Transfer Asian Res.
, Vol.
30
(
6
),
2011
, pp.
495
512
.
24.
Kathiravan
,
R.
,
Kumar
,
R.
,
Gupta
,
A.
, and
Chandra
,
R.
, “
Characterization and Pool Boiling Heat Transfer Studies of Nanofluids
,”
J. Heat Transfer
, Vol.
131
,
2009
, pp.
1
8
. https://doi.org/10.1115/1.3111260
25.
Kathiravan
,
R.
,
Kumar
,
R.
,
Gupta
,
A.
, and
Chandra
,
R.
, “
Preparation and Pool Boiling Characteristics of Copper Nanofluids over a Flat Plate Heater
,”
Int. J. Heat Mass Transfer
, Vol.
53
,
2010
, pp.
673
681
. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.022
26.
Kwark
,
S. M.
,
Ratan
,
K.
,
Gilberto
,
M.
,
Jaisuk
,
Y.
, and
You
,
S. M.
, “
Pool Boiling Characteristics of Low Concentration Nanofluids
,”
Int. J. Heat Mass Transfer
, Vol.
53
,
2010
, pp.
972
981
. https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.018
27.
Kim
,
H.
,
Truong
,
B.
,
Buongiorno
,
J.
, and
Wen
,
L.
, “
On the Effect of Surface Roughness Height, Wettability, and Nanoporosity on Leiden Frost Phenomena
,”
Appl. Phys. Lett.
, Vol.
98
,
2011
, 083121. https://doi.org/10.1063/1.3560060
28.
Fritz
,
W.
and
Ende
,
W.
, “
End of the evaporation process to cinematographic recordings of steam bubbles
,”
Phys. Z.
, Vol.
37
,
1935
, pp.
391
401
.
29.
Hatton
,
A.
, and
Hall
,
P.
, “
Photographic Study of Boiling Prepared Surfaces
,”
Proceedings of the 3rd International Heat Transfer Conference
,
Chicago, IL
, Vol.
4
,
1966
, pp.
24
37
.
30.
Wang
,
C. H.
, and
Dhir
,
V. K.
, “
Effect of Surface Wettability on Active Nucleation Site Density during Pool Boiling of Water on a Vertical Surface
,”
J. Heat Transfer
, Vol.
115
,
1993
, pp.
659
669
. https://doi.org/10.1115/1.2910737
31.
Theofanous
,
T. G.
,
Dinh
,
T. N.
,
Tu
,
J. P.
, and
Dinh
,
A. T.
, “
The Boiling Crisis Phenomenon. Part II: Dryout Dynamics and Burnout
,”
Exp. Therm. Fluid Sci.
, Vol.
26
,
2002
, pp.
793
810
. https://doi.org/10.1016/S0894-1777(02)00193-0
32.
Bang
,
I. C.
,
Chang
,
S. H.
, and
Baek
,
W. P.
, “
Visualization of a Principle Mechanism of Critical Heat Flux in Pool Boiling
,”
Int. J. Heat Mass Transfer
, Vol.
48
(
25–26
),
2005
, pp.
5371
5385
. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.006
33.
Kim
,
S. J.
,
Bang
,
I. C.
, and
Buongiorno
,
J.
, “
Surface Wettability Change during Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
, Vol.
50
,
2007
, pp.
4105
4116
. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002
34.
Phan
,
H. T.
,
Nadia
,
C.
,
Philippe
,
M.
,
Stéphane
,
C.
, and
Jérôme
,
G.
, “
Surface Wettability Control by Nanocoating: The Effects on Pool Boiling Heat Transfer and Nucleation Mechanism
,”
Int. J. Heat Mass Transfer
, Vol.
52
,
2009
, pp.
5459
5471
. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.032
35.
Coursey
,
J. S.
, and
Kim
,
J.
, “
Nanofluid Boiling: The Effect of Surface Wettability
,”
Int. J. Heat Fluid Flow
, Vol.
29
,
2008
, pp.
1577
1585
. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.004
36.
Holman
,
J. P.
,
Experimental Methods for Engineers
, 7th ed.,
McGraw-Hill
,
New York
,
2007
.
37.
Theofanous
,
T. G.
, and
Dinh
,
T. N.
, “
High Heat Flux Boiling and Burnout as Microphysical Phenomena: Mounting Evidence and Opportunities
,”
Multiphase Sci. Technol.
, Vol.
18
(
1
),
2006
, pp.
1
26
. https://doi.org/10.1615/MultScienTechn.v18.i3.30
38.
Gupta
,
S. V.
, “
Capillary Action in Narrow and Wide Tubes—A Unified Approach
,”
Metrologia
, Vol.
41
,
2004
, pp.
361
364
. https://doi.org/10.1088/0026-1394/41/6/001
39.
Huang
,
C. K.
,
Lee
,
C. W.
, and
Wang
,
C. K.
, “
Boiling Enhancement by TiO2, Nanoparticle Deposition
,”
Int. J. Heat Mass Transfer
, Vol.
54
(
23–24
),
2011
, pp.
4895
4903
. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.001
This content is only available via PDF.
You do not currently have access to this content.