Abstract

A numerical study to compare the performance of water and copper oxide (CuO) nanofluid flowing under laminar regime in a parallel-plate channel, serving as a heat sink in an electronic device, has been presented. The geometry considered here is commonly used in the design of heat sinks suitable for cooling an array of microprocessor chips for which air cooling is insufficient. The influence of nanofluids concentration on local and average skin friction coefficients, Nusselt numbers, and convective heat-transfer coefficients in the channel have been analyzed in detail. The increases in the skin friction and heat transfer with volumetric concentration of nanoparticles have been evaluated from numerical simulations in the Reynolds number range of 100 to 2000. The analysis shows that the flow in this heat sink is hydrodynamically and thermally developing, for which the axial variations of local skin friction and local Nusselt number are presented. As an example, computational results for an 8 % volumetric concentration of CuO nanofluid shows that at a Reynolds number of 2000, the average heat-transfer coefficient increases nearly by a factor of 2 in comparison with pure water. From a detailed analysis summarized in Table 2, it is observed that there is an increase in the pressure loss as the particle concentration increases. For the CuO nanofluid of dilute concentration of 2 %, a slightly higher pumping power of about 10 % compared to water is predicted. This may be tolerable for the thermal protection of expensive electronic chips, in applications where the chip cost is the dominant factor.

References

1.
Pak
,
B. C.
and
Cho
,
Y. I.
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
, Vol.
11
,
1998
, pp.
151
170
. https://doi.org/10.1080/08916159808946559
2.
Xuan
,
Y.
and
Li
,
Q.
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
, Vol.
125
,
2003
, pp.
151
155
. https://doi.org/10.1115/1.1532008
3.
Yang
,
Y.
,
Zhang
,
Z. G.
,
Grulke
,
E. A.
,
Anderson
,
W. B.
, and
Wu
,
G.
, “
Heat Transfer Properties of Nanoparticle-in-Fluid Dispersions (Nanofluids) in Laminar Flow
,”
Int. J. Heat Mass Transfer
, Vol.
48
,
2005
, pp.
1107
1116
. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038
4.
Buongiorno
,
J.
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
, Vol.
128
,
2006
, pp.
240
250
. https://doi.org/10.1115/1.2150834
5.
Akbarinia
,
A.
and
Behzadmehr
,
A.
, “
Numerical Study of Laminar Mixed Convection of a Nanofluid in Horizontal Curved Tubes
,”
Appl. Thermal Eng.
, Vol.
27
,
2007
, pp.
1327
1337
. https://doi.org/10.1016/j.applthermaleng.2006.10.034
6.
Maiga
,
S. B.
,
Palm
,
S. J.
,
Nguyan
,
C. T.
,
Roy
,
G.
, and
Galanis
,
N.
, “
Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows
,”
Int. J. Heat Fluid Flow
, Vol.
26
,
2005
, pp.
530
546
. https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004
7.
Behzadmehr
,
A.
,
Avval
,
M. S.
, and
Galanis
,
N.
, “
Prediction of Turbulent Forced Convection of a Nanofluid in a Tube with Uniform Heat Flux Using Two Phase Approach
,”
Int. J. Heat Fluid Flow
, Vol.
28
,
2007
, pp.
211
219
. https://doi.org/10.1016/j.ijheatfluidflow.2006.04.006
8.
Incropera
,
F. P.
and
DeWitt
,
D. P.
,
Introduction to Heat Transfer
,
John Wiley and Sons
,
New York
,
2001
.
9.
Hamilton
,
R. L.
and
Crosser
,
O. K.
, “
Thermal Conductivity of Heterogeneous Two-Component System
,”
I EC Fundamentals
, Vol.
1
,
1962
, pp.
187
191
. https://doi.org/10.1021/i160003a005
10.
Kulkarni
,
D. P.
,
Das
,
D. K.
, and
Chukwu
,
G. A.
, “
Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension
,”
J. Nanosci. Nanotechnol.
, Vol.
6
,
2006
, pp.
1150
1154
. https://doi.org/10.1166/jnn.2006.187
11.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
G.
, “
Investigation of CuO/Water Nanofluid Laminar Convective Heat Transfer through a Circular Tube
,”
J. Enhanced Heat Transfer
, Vol.
13
,
2006
, pp.
279
289
. https://doi.org/10.1615/JEnhHeatTransf.v13.i4.10
12.
Fluent 6.2; User Guide
. (
2005
).
Fluent Inc.
,
Lebanon, NH
.
13.
Patankar
,
S. V.
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
,
1980
.
14.
Gambit; User Guide
. (
2005
).
Fluent Inc.
,
Lebanon, NH
.
15.
White
,
F. M.
,
Viscous Fluid Flow
,
McGraw Hill
,
New York
,
1991
.
16.
Shah
,
R. K.
and
London
,
A. L.
,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
,
1978
.
17.
Bejan
,
A.
,
Convection Heat Transfer
, 2nd ed.,
John Wiley and Sons
,
New York
,
1995
.
18.
Heaton
,
H. S.
,
Reynolds
,
W. C.
, and
Kays
,
W. M.
, “
Heat Transfer in Annular Passages Simultaneous Development of Velocity and Temperature Fields in Laminar Flow
,”
Int. J. Heat Mass Transfer
, Vol.
7
,
1964
, pp.
763
781
. https://doi.org/10.1016/0017-9310(64)90006-7
19.
Vajjha
,
R.S.
and
Das
,
D. K.
, “
Measurement of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
, Vol.
52
,
2009
, pp.
4675
4682
. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027
This content is only available via PDF.
You do not currently have access to this content.