Abstract

In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement of absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This paper presents a summary of the research, a description of the EPR/PTFE dosimetry system, and recommendations for preparation and fielding of the dosimetry in photon and mixed neutron/photon environments.

References

1.
ISO/ASTM 51607:2004(E), “
Standard Practice for Use of an Alanine-EPR Dosimetry System
,”
Annual Book of ASTM Standards
, Vol.
12.02
,
2009
.
2.
Vehar
,
D. W.
, and
Griffin
,
P. J.
, “
Development of an Alanine Dosimeter for Gamma Dosimetry in Mixed Environments
,”
Reactor Dosimetry, ASTM STP 1228
,
H.
Farrar
 IV
,
E. P.
Lippincott
, and
J. G.
Williams
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1994
.
3.
Regulla
,
D. F.
, and
Deffner
,
U.
, “
Dosimetry by ESR Spectroscopy of Alanine
,”
Trends in Radiation Dosimetry
,
W. L.
McLaughlin
, Ed., Appl. Radiat. Isot., Vol
33
,
1982
, pp.
1101
1114
.
4.
Griffin
,
P. J.
,
Kelly
J. G.
, and
Vehar
,
D. W.
, “
Updated Neutron Spectrum Characterization of SNL Baseline Reactor Environments, Vol. 1: Characterization
,” Report No. SAND93-2554, Sandia National Laboratories, Albuquerque, NM,
1994
.
5.
Griffin
,
P. J.
,
Luker
,
S. M.
,
Cooper
,
P. J.
,
Vehar
,
D. W.
,
DePriest
K. R.
, and
Holm
,
C. V.
, “
Characterization of ACRR Reference Benchmark Field
,”
Reactor Dosimetry in the 21st Century: Proceedings of the 11th International Symposium on Reactor Dosimetry
,
J.
Wagemans
,
H.
Abderrahim
,
P.
D’Hondt
, and
C.
De Raedt
, Eds.,
World Scientific
,
Singapore
,
2003
.
6.
MacFarlane
,
R. E.
,
Muir
,
D. W.
, and
Boicourt
,
R. M.
, “
The NJOY Nuclear Data Processing System, Volume 1: User’s Manual
,” Report No. LA-9303-M, ENDF-324, Los Alamos National Laboratory, Los Alamos, NM, May
1982
.
7.
Chadwick
,
M. B.
,
Oblozˇinský
,
P.
,
Herman
,
M.
,
Greene
,
N. M.
,
McKnight
,
R. D.
,
Smith
,
D. L.
,
Young
,
P. G.
,
MacFarlane
,
R. E.
,
Hale
,
G. M.
,
Frankle
,
S. C.
,
Kahler
,
A. C.
,
Kawano
,
T.
,
Little
,
R. C.
,
Madland
,
D. G.
,
Moller
,
P.
,
Mosteller
,
R. D.
,
Page
,
P. R.
,
Talou
,
P.
,
Trellue
,
H.
,
White
,
M. C.
,
Wilson
,
W. B.
,
Arcilla
,
R.
,
Dunford
,
C. L.
,
Mughabghab
,
S. F.
,
Pritychenko
,
B.
,
Rochman
,
D.
,
Sonzogni
,
A. A.
,
Lubitz
,
C. R.
,
Trumbull
,
T. H.
,
Weinman
,
J. P.
,
Brown
,
D. A.
,
Cullen
,
D. E.
,
Heinrichs
,
D. P.
,
McNabb
,
D. P.
,
Derrien
,
H.
,
Dunn
,
M. E.
,
Larson
,
N. M.
,
Leal
,
L. C.
,
Carlson
,
A. D.
,
Block
,
R. C.
,
Briggs
,
J. B.
,
Cheng
,
E. T.
,
Huria
,
H. C.
,
Zerkle
,
M. L.
,
Kozier
,
K. S.
,
Courcelle
,
A.
,
Pronyaev
,
V.
, and
van der Marck
,
S. C.
, “
ENDF/B-VII. 0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology
,”
Nuclear Data Sheets
, Vol.
107
, No.
12
,
2006
, pp.
2931
3060
. https://doi.org/10.1016/j.nds.2006.11.001
8.
Gerstenberg
,
H.
, “
AFRRI, Including Tabulation of Calculated Relative Effectiveness Numerical Values for the Relative Effectiveness of Alanine to Neutron Ionizing Dose
,” Private Communication, September 23,
1993
.
9.
Waligorski
,
M. P. R.
,
Danialy
,
G.
,
Kim
S. L.
, and
Katz
,
R.
, “
The Response of the Alanine Detector after Charged-Particle and Neutron Irradiations
,”
Appl. Radiat. Isot.
, Vol.
40
, Nos.
10–12
,
1989
, pp.
923
933
. https://doi.org/10.1016/0883-2889(89)90018-X
10.
Rinard
,
P. M.
, and
Simons
,
G. G.
, “
Calculated Neutron Sensitivities of CaF2 and 7LiF Thermoluminescent Dosimeters
,”
Nucl. Inst. Meth.
, Vol.
158
,
1970
, pp.
545
549
. https://doi.org/10.1016/S0029-554X(79)95780-X
This content is only available via PDF.
You do not currently have access to this content.