Abstract

With motion preserving systems, whose behavior is dependent on the loading applied, it is becoming more important to produce a loading environment that better simulates the situation in vivo. Several studies show that the spine experiences high compressive loads that change as a function of position. The purpose of this study was to apply a high compressive dynamic follower load and determine the moment required to produce a physiological range of motion in vitro. Six human specimens (L2-L3) were subjected to a pure moment, in combination with a high compressive dynamic follower load. Appropriate compressive loads were obtained from literature based on in vivo intradiscal pressure measurements. The moments necessary to produce pre-defined angles of rotation in flexion, extension, lateral bending, and axial rotation (in vivo literature values) were recorded. The follower load was attached laterally in flexion-extension and axial rotation and anterior-posteriorly in lateral bending. Tests were also conducted using two traditional loading protocols for comparison: ±10 Nm (no follower load); and ±10 Nm with a 600 N constant follower load, in terms of range of motion (ROM), helical axis of motion (HAM), and flexibility coefficients.The new loading protocol resulting from this study consisted of a compressive follower load of 800 N in the neutral position, a flexion moment of 35 Nm combined with a maximum compressive follower load of 2000 N, an extension moment of 10 Nm combined with 900 N, a moment of ±15 Nm in lateral bending with 1100 N, and a moment of ±20 Nm in axial rotation with 1250 N. The anterior-posterior follower load fixation in lateral bending allowed more unrestrained movement. The moments necessary to produce physiological motion under a dynamic compressive follower load are higher than what is currently used and are comparable to calculated in vivo moments.

References

1.
Panjabi
,
M. M.
, “
Biomechanical Evaluation of Spinal Fixation Devices: I. A Conceptual Framework
,”
Spine
, Vol.
13
, No.
10
,
1988
, pp.
1129
1134
. https://doi.org/10.1097/00007632-198810000-00013
2.
Wilke
,
H.-J.
,
Wenger
,
K.
, and
Claes
,
L.
, “
Testing Criteria for Spinal Implants: Recommendations for the Standardization of In Vitro Stability Testing of Spinal Implants
,”
Eur. Spine J.
, Vol.
7
, No.
2
,
1998
, pp.
148
154
. https://doi.org/10.1007/s005860050045
3.
Goel
,
V. K.
,
Panjabi
,
M. M.
,
Patwardhan
,
A. G.
,
Dooris
,
A. P.
, and
Serhan
,
H.
, “
Test Protocols for Evaluation of Spinal Implants
,”
J. Bone Joint Surg. Am.
, Vol.
88
,
2006
, pp.
103
109
. https://doi.org/10.2106/JBJS.E.01363
4.
McNally
,
D. S.
, “
The Objectives for the Mechanical Evaluation of Spinal Instrumentation Have Changed
,”
Eur. Spine J.
, Vol.
11
, No. 2,
2002
, pp.
S179
S185
.
5.
Wilke
,
H.-J.
,
Kettler
,
A.
, and
Claes
,
L.
, “
Range of Motion or Finite Helical Axis? Comparison of Different Methods to Describe Spinal Segmental Motion In Vitro
,”
Roundtables in Spine Surgery. Spine Biomechanics: Evaluation of Motion Preservation Devices and Relevant Terminology
, Vol.
1
, No.
1
,
2005
, pp.
13
21
.
6.
Cripton
,
P. A.
,
Oxland
,
T. R.
, and
Zhu
,
Q.
, “
The Use of Helical Axis of Motion and Facet Joint Load Information in the Evaluation of Nonfusion Spinal Implants: Concept and Preliminary Results
,”
Roundtables in Spine Surgery. Spine Biomechanics: Evaluation of Motion Preservation Devices and Relevant Terminology
, Vol.
1
, No.
1
,
2005
, pp.
22
30
.
7.
Panjabi
,
M. M.
,
Abumi
,
K.
,
Duranceau
,
J.
, and
Crisco
,
J. J.
, “
Biomechanical Evaluation of Spinal Fixation Devices: II. Stability Provided by Eight Internal Fixation Devices
,”
Spine
, Vol.
13
, No.
10
,
1988
, pp.
1135
1140
. https://doi.org/10.1097/00007632-198810000-00014
8.
Yamamoto
,
I.
,
Panjabi
,
M. M.
,
Crisco
,
T.
, and
Oxland
,
T.
, “
Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint
,”
Spine
, Vol.
14
, No.
11
,
1989
, pp.
1256
1260
. https://doi.org/10.1097/00007632-198911000-00020
9.
Schmoelz
,
W.
,
Huber
,
J. F.
,
Nydegger
,
T.
,
Claes
,
L.
, and
Wilke
,
H. J.
, “
Dynamic Stabilization of the Lumbar Spine and its Effects on Adjacent Segments: An In Vitro Experiment
,”
J. Spinal Disord. Tech.
, Vol.
16
, No.
4
,
2003
, pp.
418
423
. https://doi.org/10.1097/00024720-200308000-00015
10.
Niosi
,
C. A.
,
Zhu
,
Q. A.
,
Wilson
,
D. C.
,
Keynan
,
O.
,
Wilson
,
D. R.
, and
Oxland
,
T. R.
, “
Biomechanical Characterization of the Three-Dimensional Kinematic Behavior of the Dynesys Dynamic Stabilization System: An In Vitro Study
,”
Eur. Spine. J.
, Vol.
15
, No.
6
,
2006
, pp.
913
922
. https://doi.org/10.1007/s00586-005-0948-9
11.
Wilke
,
H.-J.
,
Schmidt
,
H.
,
Werner
,
K.
,
Schmölz
,
W.
, and
Drumm
,
J.
, “
Biomechanical Evaluation of a New Total Posterior-Element Replacement System
,”
Spine
, Vol.
31
, No.
24
,
2006
, pp.
2790
2796
. https://doi.org/10.1097/01.brs.0000245872.45554.c0
12.
Panjabi
,
M. M.
,
Henderson
,
G.
,
James
,
Y.
, and
Timm
,
J. P.
, “
StabilimaxNZ Versus Simulated Fusion: Evaluation of Adjacent-Level Effects
,”
Eur. Spine J.
, Vol.
16
, No.
12
,
2007
, pp.
2159
2165
. https://doi.org/10.1007/s00586-007-0444-5
13.
Gédet
,
P.
,
Haschtmann
,
D.
,
Thistlethwaite
,
P. A.
, and
Ferguson
,
S. J.
, “
Comparative Biomechanical Investigation of a Modular Dynamic Lumbar Stabilization System and the Dynesys System
,”
Eur. Spine J.
, Vol.
18
, No.
10
,
2009
, pp.
1504
1511
. https://doi.org/10.1007/s00586-009-1077-7
14.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Meade
,
K. P.
,
Lee
,
B.
, and
Dunlap
,
B.
, “
A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression
,”
Spine
, Vol.
24
, No.
10
,
1999
, pp.
1003
1009
. https://doi.org/10.1097/00007632-199905150-00014
15.
Nachemson
,
A.
The Load on Lumbar Disks in Different Positions of the Body
,”
Clin. Orthop. Relat. Res.
, Vol.
45
,
1966
, pp.
107
122
. https://doi.org/10.1097/00003086-196600450-00014
16.
Sato
,
K.
,
Kikuchi
,
S.
, and
Yonezawa
,
T.
, “
In Vivo Intradiscal Pressure Measurement in Healthy Individuals and in Patients with Ongoing Back Problems
,”
Spine
, Vol.
24
, No.
23
,
1999
, pp.
2468
2474
. https://doi.org/10.1097/00007632-199912010-00008
17.
Wilke
,
H.-J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
, “
New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
, Vol.
24
, No.
8
,
1999
, pp.
755
762
. https://doi.org/10.1097/00007632-199904150-00005
18.
Wilke
,
H.-J.
,
Neef
,
P.
,
Hinz
,
B.
,
Seidel
,
H.
, and
Claes
,
L.
, “
Intradiscal Pressure Together with Anthropometric Data – A Data Set for the Validation of Models
,”
Clin. Biomech.
, Vol.
16
, Suppl. 1,
2001
, pp.
S111
S126
. https://doi.org/10.1016/S0268-0033(00)00103-0
19.
Janevic
,
J.
,
Ashton-Miller
,
J. A.
, and
Schultz
,
A. B.
, “
Large Compressive Preloads Decrease Lumbar Motion Segment Flexibility
,”
J. Orthop. Res.
, Vol.
9
, No.
2
,
1991
, pp.
228
236
. https://doi.org/10.1002/jor.v9:2
20.
Cripton
,
P. A.
,
Bruehlmann
,
S. B.
,
Orr
,
T. E.
,
Oxland
,
T. R.
, and
Nolte
,
L.-P.
, “
In Vitro Axial Preload Application During Spine Flexibility Testing: Towards Reduced Apparatus-Related Artefacts
,”
J. Biomech.
, Vol.
33
, No.
12
,
2000
, pp.
1559
1568
. https://doi.org/10.1016/S0021-9290(00)00145-7
21.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Carandang
,
G.
,
Simonds
,
J.
,
Voronov
,
L. I.
,
Ghanayem
,
A. J.
,
Meade
,
K. P.
,
Gavin
,
T. M.
, and
Paxinos
,
O.
, “
Effect of Compressive Follower Preload on the Flexion-Extension Response of the Human Lumbar Spine
,”
J. Orthop. Res.
, Vol.
21
,
2003
, pp.
540
546
. https://doi.org/10.1016/S0736-0266(02)00202-4
22.
Tawackoli
,
W.
,
Marco
,
R.
, and
Liebschner
,
M. A. K.
, “
The Effect of Compressive Axial Preload on the Flexibility of the Thoracolumbar Spine
,”
Spine
, Vol.
29
, No.
9
,
2004
, pp.
988
993
. https://doi.org/10.1097/00007632-200405010-00007
23.
Pearcy
,
M. J.
, “
Stereo Radiography of Lumbar Spine Motion
,”
Acta Orthop. Scand.
, Vol.
56
, Suppl. 212,
1985
, pp.
1
45
.
24.
Panjabi
,
M. M.
,
Krag
,
M. H.
, and
Goel
,
V. K.
, “
A Technique for Measurement and Description of Three-Dimensional Six Degree-of-Freedom Motion of a Body Joint with an Application to the Human Spine
,”
J. Biomech.
, Vol.
14
, No.
7
,
1981
, pp.
447
460
. https://doi.org/10.1016/0021-9290(81)90095-6
25.
Spoor
,
C. W.
and
Veldpaus
,
F. E.
, “
Rigid Body Motion Calculated from Spatial Co-ordinates of Markers
,”
J. Biomech.
, Vol.
13
, No.
4
,
1980
, pp.
391
393
. https://doi.org/10.1016/0021-9290(80)90020-2
26.
Potvin
,
J. R.
,
McGill
,
S. M.
, and
Norman
,
R. W.
, “
Trunk Muscle and Lumbar Ligament Contributions to Dynamic Lifts with Varying Degrees of Trunk Flexion
,”
Spine
, Vol.
16
, No.
9
,
1991
, pp.
1099
1107
. https://doi.org/10.1097/00007632-199109000-00015
27.
McGill
,
S. M.
, “
Estimation of Force and Extensor Moment Contributions of the Disc and Ligaments at L4-L5
,”
Spine
, Vol.
13
, No.
12
,
1988
, pp.
1395
1402
. https://doi.org/10.1097/00007632-198812000-00011
28.
Freudiger
,
S.
,
Dubois
,
G.
, and
Lorrain
,
M.
, “
Dynamic Neutralisation of the Lumbar Spine Confirmed on a New Lumbar Spine Simulator In Vitro
,”
Arch. Orthop. Trauma Surg.
, Vol.
119
,
1999
, pp.
127
132
. https://doi.org/10.1007/s004020050375
29.
Adams
,
M. A.
and
Dolan
,
P.
, “
A Technique for Quantifying the Bending Moment Acting on the Lumbar Spine In Vivo
,”
J. Biomech.
, Vol.
24
, No.
2
,
1991
, pp.
117
126
. https://doi.org/10.1016/0021-9290(91)90356-R
30.
Renner
,
S. M.
,
Natarajan
,
R. N.
,
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Voronov
,
L. I.
,
Guo
,
B. Y.
,
Andersson
,
G. B. J.
, and
An
,
H. S.
, “
Novel Model to Analyze the Effect of Large Compressive Follower Pre-Load on Range of Motions in a Lumbar Spine
,”
J. Biomech.
, Vol.
40
, No.
6
,
2007
, pp.
1326
1332
. https://doi.org/10.1016/j.jbiomech.2006.05.019
31.
Panjabi
,
M. M.
,
Yamamoto
,
I.
,
Oxland
,
T. R.
, and
Crisco
,
J. J.
, “
Helical Axes of Motion Change with Lumbar Vertebral Level
,”
Trans. Annu. Meet. – Orthop. Res. Soc.
,
Anaheim
,
California
,
1991
.
32.
Pearcy
,
M. J.
and
Bogduk
,
N.
, “
Instantaneous Axes of Rotation of the Lumbar Interverteberal Joints
,”
Spine
, Vol.
13
, No.
9
,
1988
, pp.
1033
1041
. https://doi.org/10.1097/00007632-198809000-00011
33.
Haberl
,
H.
,
Cripton
,
P. A.
,
Orr
,
T.-E.
,
Beutler
,
T.
,
Frei
,
H.
,
Lanksch
,
W. R.
, and
Nolte
,
L.-P.
, “
Kinematic Response of Lumbar Functional Spinal Units to Axial Torsion With and Without Superimposed Compression and Flexion/Extension
,”
Eur. Spine J.
, Vol.
13
, No.
6
,
2004
, pp.
560
566
. https://doi.org/10.1007/s00586-004-0720-6
34.
Kettler
,
A.
,
Marin
,
F.
,
Sattelmayer
,
G.
,
Mohr
,
M.
,
Mannel
,
H.
,
Dürselen
,
L.
,
Claes
,
L.
, and
Wilke
,
H. J.
, “
Finite Helical Axes of Motion are a Useful Tool to Describe the Three-Dimensional In Vitro Kinematics of the Intact, Injured, and Stabilized Spine
,”
Eur. Spine J.
, Vol.
13
, No.
6
,
2004
, pp.
553
559
. https://doi.org/10.1007/s00586-004-0710-8
35.
Yoshioka
,
T.
,
Tsuji
,
H.
,
Hirano
,
N.
, and
Sainoh
,
S.
, “
Motion Characteristic of the Normal Lumbar Spine in Young Adults: Instantaneous Axis of Rotation and Vertebral Center of Motion Analyses
,”
J. Spinal Disord.
, Vol.
3
, No.
2
,
1990
, pp.
103
113
. https://doi.org/10.1097/00002517-199006000-00001
36.
Zhao
,
F.
,
Pollintine
,
P.
,
Hole
,
B. D.
,
Dolan
,
P
,. and
Adams
,
M. A.
, “
Discogenic Origins of Spinal Instability
,”
Spine
, Vol.
30
, No.
23
,
2005
, pp.
2621
2630
. https://doi.org/10.1097/01.brs.0000188203.71182.c0
37.
Gertzbein
,
S. D.
,
Seligman
,
J.
,
Holtby
,
R.
,
Chan
,
K. H.
,
Kapasouri
,
A.
,
Tile
,
M.
, and
Cruickshank
,
B.
, “
Centrode Patterns and Segmental Instability in Degenerative Disc Disease
,”
Spine
, Vol.
10
, No.
3
,
1985
, pp.
257
261
. https://doi.org/10.1097/00007632-198504000-00014
38.
Schmoelz
,
W.
,
Onder
,
U.
,
Martin
,
A.
, and
von Strempel
,
A.
, “
Non-Fusion Instrumentation of the Lumbar Spine with a Hinged Pedicle Screw Rod System: An In Vitro Experiment
,”
Eur. Spine J.
, Vol.
18
, No.
10
,
2009
, pp.
1478
1485
. https://doi.org/10.1007/s00586-009-1052-3
39.
White
,
A. A.
and
Panjabi
,
M.M.
,
Clinical Biomechanics of the Spine
, 2nd ed.,
J.B. Lippincott Company
,
Philadelphia, PA
,
1990
, pp.
46
49
.
40.
Thompson
,
R. E.
,
Barker
,
T. M.
, and
Pearcy
,
M. J.
, “
Defining the Neutral Zone of Sheep Intervertebral Joints During Dynamic Motions: An In Vitro Study
,”
Clin. Biomech.
, Vol.
18
,
2003
, pp.
89
98
. https://doi.org/10.1016/S0268-0033(02)00180-8
41.
Guan
,
Y.
,
Yoganandan
,
N.
,
Moore
,
J.
,
Pintar
,
F. A.
,
Zhang
,
J.
,
Maiman
,
D. J.
, and
Laud
,
P.
, “
Moment-Rotation Responses of the Human Lumbosacral Spinal Column
,”
J. Biomech.
, Vol.
40
,
2007
, pp.
1975
1980
. https://doi.org/10.1016/j.jbiomech.2006.09.027
42.
Busscher
,
I.
,
van Dieën
,
J. H.
,
Kingma
,
I.
,
van der Veen
,
A. J.
,
Verkerke
,
G. J.
, and
Veldhuizen
,
A. G.
, “
Biomechanical Characteristics of Different Regions of the Human Spine – An In Vitro Study on Multilevel Spinal Segments
,”
Spine
, Vol.
34
, No.
26
,
2009
, pp.
2858
2864
. https://doi.org/10.1097/BRS.0b013e3181b4c75d
This content is only available via PDF.
You do not currently have access to this content.