Abstract

ABSTRACT: The stability of precious metals under acidic conditions is a potential challenge for several applications, including proton exchange membrane fuel cells (PEMFCs). Strategies addressing this problem have been tested, including the addition of organic stabilizing agents such as polypyrrole. Organic stabilizing agents also have been used to synthesize precious metal nanoparticles by assisting in the regulation of the nucleation and growth rates. In this study, the stability of 3 nm Pt nanoparticles, synthesized using polyvinylpyrrolidone (PVP) as a capping agent, under acidic conditions was assessed. Well-defined 3 nm Pt nanoparticles were synthesized using a combination of metal precursor, Hexachloroplatinic acid (H2PtCl6), surfactant (PVP), alcohol (methanol), and water. The metal ion reduction rate was controlled by choosing an appropriate alcohol concentration and surfactant amount. Electrocatalytic properties of the nanoparticles were investigated using cyclic voltammetry electrochemistry experiments, to determine the corresponding electrochemical stability. Batches of washed (in cycles of hexane and ethanol) and unwashed nanoparticles were cycled between the hydrogen and oxygen reduction potentials. Results from the electrochemistry experiment were further correlated with temperature-programmed oxidation experiments after supporting the nanoparticles on silica. Detailed results of this work are presented in this paper, and potential implications for the oxygen reduction reaction and PEMFCs are discussed.

References

1.
Carrette
,
L.
,
Friedrich
,
K. A.
, and
Stimming
,
U.
, “
Fuel Cells - Fundamentals and Applications
,”
Fuel Cells
, Vol.
1
, No. 1,
2001
, pp.
5
39
. https://doi.org/10.1002/1615-6854(200105)1:1<>1.0.CO;2-R
2.
Gasteiger
,
H. A.
, and Markovic, N. M., “Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs,”
Appl. Catal., B
, Vol.
56
,
2005
, pp.
9
35
. https://doi.org/10.1016/j.apcatb.2004.06.021
3.
Gasteiger
,
H. A.
and
Markovic
,
N. M.
, “Just a Dream-or Future Reality?,”
Science
, Vol.
324
,
2009
, pp.
48
49
. https://doi.org/10.1126/science.1172083
4.
Matter
,
P. H.
, L. Zhang, and Ozkan, U. S., “The Role of Nanostructure in Nitrogen-Containing Carbon Catalysts for the Oxygen Reduction Reaction,”
J. Catal.
, Vol.
239
,
2006
, pp.
83
96
. https://doi.org/10.1016/j.jcat.2006.01.022
5.
Bashyam
,
R.
and Zelenay, P., “A Class of Non-Precious Metal Composite Catalysts for Fuel Cells,”
Nature (London)
, Vol.
443
,
2006
, pp.
63
66
. https://doi.org/10.1038/nature05118
6.
Lefèvre
,
M.
,
Proietti
,
E.
,
Jaouen
,
F.
, and
Dodelet
,
J.-P.
, “Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells,”
Science
, Vol.
324
,
2009
, pp.
71
74
. https://doi.org/10.1126/science.1170051
7.
Winther-Jensen
,
B.
,
Winther-Jensen
,
O.
,
Forsyth
,
M.
, and
MacFarlane
,
D. R.
, “High Rates of Oxygen Reduction over a Vapor Phase-Polymerized PEDOT Electrode,”
Science
, Vol.
321
,
2008
, pp.
671
674
. https://doi.org/10.1126/science.1159267
8.
Matter
,
P. H.
and
Ozkan
,
U. S.
, “Non-Metal Catalysts for Dioxygen Reduction in an Acidic Electrolyte,”
Catal. Lett.
, Vol.
109
, No. 3/4,
2006
, pp.
115
123
. https://doi.org/10.1007/s10562-006-0067-1
9.
Biddinger
,
E. J.
,
von Deak
,
D.
, and
Ozkan
,
U. S.
, “Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts,”
Top. Catal.
, Vol.
52
,
2009
, pp.
1566
1574
. https://doi.org/10.1007/s11244-009-9289-y
10.
Biddinger
,
E. J.
and
Ozkan
,
U. S.
, “Role of Graphitic Edge Plane Exposure in Carbon Nanostructures for Oxygen Reduction Reaction,”
J. Phys. Chem. C
, Vol.
114
,
2010
, pp.
15306
15314
. https://doi.org/10.1021/jp104074t
11.
Greeley
,
J.
,
Stephens
,
E. L.
,
Bondarenko
,
A. S.
,
Johansson
,
T. P.
,
Hansen
,
H. A.
,
Jaramillo
,
T. F.
,
Rossmeisl
,
J.
,
Chorkendorff
,
I.
, and
Norskov
,
J. K.
, “Alloys of Platinum and Early Transition Metals as Oxygen Reduction Electrocatalysts,”
Nat. Chem.
, Vol.
1
,
2009
, pp.
552
556
. https://doi.org/10.1038/nchem.367
12.
Stamenkovic
,
V. R.
,
Mun
,
B. S.
,
Arenz
,
M.
,
Mayrhofer
,
K. J. J.
,
Lucas
,
C. A.
,
Wang
,
G.
,
Ross
,
P. N.
, and
Markovic
,
N. M.
, “Trends in Electrocatalysis on Extended and Nanoscale Ptbimetallic Alloy Surfaces,”
Nature Mater.
, Vol.
6
,
2007
, pp.
241
247
. https://doi.org/10.1038/nmat1840
13.
Stamenkovic
,
V. R.
,
Fowler
,
B.
,
Mun
,
B. S.
,
Wang
,
G.
,
Ross
,
R. N.
,
Lucas
,
C. A.
, and
Markovic
,
N. M.
, “Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability,”
Science
, Vol.
315
,
2007
, pp.
493
497
. https://doi.org/10.1126/science.1135941
14.
Zhang
,
J.
,
Sasaki
,
K.
,
Sutter
,
E.
, and
Adzic
,
R. R.
, “Stabilization of Platinum Oxygen- Reduction Electrocatalysts Using Gold Clusters,”
Science
, Vol.
315
,
2007
, pp.
220
222
. https://doi.org/10.1126/science.1134569
15.
Tang
,
L.
,
Han
,
B.
,
Persson
,
K.
,
Friesen
,
C.
,
He
,
T.
,
Sieradzki
,
K.
, and
Ceder
,
G.
, “Electrochemical Stability of Nanometer-Scale Pt Particles in Acidic Environments,”
J. Am. Chem. Soc.
, Vol.
132
,
2010
, pp.
596
600
. https://doi.org/10.1021/ja9071496
16.
Tao
,
A. R.
,
Habas
,
S. E.
, and
Yang
,
P.
, “Shape Control of Colloidal Metal Nanocrystals,”
Small
, Vol.
4
,
2008
, pp.
310
325
. https://doi.org/10.1002/smll.v4:3
17.
Zhang
,
Y.
,
Grass
,
M. E.
,
Habas
,
S. E.
,
Tao
,
F.
,
Zhang
,
T.
,
Yang
,
P.
, and
Somorjai
,
G. A.
, “One-step Polyol Synthesis and Langmuir-Blodgett monolayer Formation of Size-tunable Monodisperse Rhodium Nanocrystals with Catalytically Active (111) Surface Structures,”
J. Phys. Chem. C
, Vol.
111
,
2007
, pp.
12243
12253
. https://doi.org/10.1021/jp073350h
18.
Zhang
,
Y.
,
Grass
,
M. E.
,
Huang
,
W.
, and
Somorjai
,
G. A.
, “Seedless Polyol Synthesis and CO Oxidation Activity of Monodisperse (111)- and (100)-Oriented Rhodium Nanocrystals in Sub-10 nm Sizes,”
Langmuir
, Vol.
26
,
2010
, pp.
16463
16468
. https://doi.org/10.1021/la101213q
19.
Zhang
,
Y.
,
Grass
,
M. E.
,
Kuhn
,
J. N.
,
Tao
,
F.
,
Habas
,
S. E.
,
Huang
,
W.
,
Yang
,
P.
, and
Somorjai
,
G. A.
, “Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes,”
J. Am. Chem. Soc.
, Vol.
130
,
2008
, pp.
5868
5869
. https://doi.org/10.1021/ja801210s
20.
Tsung
,
C.-K.
,
Kuhn
,
J. N.
,
Huang
,
W.
,
Aliaga
,
C.
,
Hung
,
L.-I.
,
Somorjai
,
G. A.
, and
Yang
,
P.
, “Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation,”
J. Am. Chem. Soc.
, Vol.
131
, No. 16,
2009
, pp.
5817
5822
. https://doi.org/10.1021/ja809936n
21.
Huang
,
W.
,
Kuhn
,
J. N.
,
Tsung
,
C.-K.
,
Zhang
,
Y.
,
Habas
,
S. E.
,
Yang
,
P.
, and
Somorjai
,
G. A.
, “Dendrimer Templated Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole Hydrogenation,”
Nano Lett.
, Vol.
8
, No. 7,
2008
, pp.
2027
2034
. https://doi.org/10.1021/nl801325m
22.
Witham
,
C. A.
,
Huang
,
W.
,
Tsung
,
C.-K.
,
Kuhn
,
J. N.
,
Somorjai
,
G. A.
, and
Toste
,
F. D.
, “Converting Homogeneous to Heterogeneous in Electrophilic Catalysis Using Monodisperse Metal Nanoparticles,”
Nat. Chem.
, Vol.
2
,
2010
, pp.
36
41
. https://doi.org/10.1038/nchem.468
23.
Li
,
Y.
and
El-Sayed
,
M. A.
, “The Effect of Stabilizers on the Catalytic Activity and Stability of Pd Colloidal Nanoparticles in the Suzuki Reactions in Aqueous Solution,”
J. Phys. Chem. B
, Vol.
105
,
2001
, pp.
8938
8943
. https://doi.org/10.1021/jp010904m
24.
Narayanan
,
R.
and
El-Sayed
,
M. A.
, “Some Aspects of Colloidal Nanoparticle Stability, Catalytic Activity, and Recycling Potential,”
Top. Catal.
, Vol.
47
,
2008
, pp.
15
21
. https://doi.org/10.1007/s11244-007-9029-0
25.
Kuhn
,
J. N.
,
Tsung
,
C.-K.
,
Huang
,
W.
, and
Somorjai
,
G. A.
, “Effect of Organic Capping Layers Over Monodisperse Platinum Nanoparticles Upon Activity for Ethylene Hydrogenation and Carbon Monoxide Oxidation,”
J. Catal.
, Vol.
265
,
2009
, pp.
209
215
. https://doi.org/10.1016/j.jcat.2009.05.001
26.
Huang
,
S.-Y.
,
Ganesan
,
P.
,
Park
,
S.
, and
Popov
,
B. N.
, “Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications,”
J. Am. Chem. Soc.
, Vol.
131
,
2009
, pp.
13898
13899
. https://doi.org/10.1021/ja904810h
27.
Matsumori
,
H.
,
Takenaka
,
S.
,
Matsune
,
H.
, and
Kishida
,
M.
, “Preparation of Carbon Nanotube-Supported Pt Catalysts Covered with Silica Layers; Application to Cathode Catalysts for PEFC,”
Appl.Catal., A
, Vol.
373
,
2010
, pp.
176
185
. https://doi.org/10.1016/j.apcata.2009.11.011
28.
Takenaka
,
S.
,
Susuki
,
N.
,
Miyamoto
,
H.
,
Tanabe
,
E.
,
Matsunea
,
H.
, and
Kishida
,
M.
, “Highly Durable Pd Metal Catalysts for the Oxygen Reduction Reaction in Fuel Cells; Coverage of Pd Metal with Silica,”
Chem. Commun.
, Vol.
46
,
2010
, pp.
8950
8952
. https://doi.org/10.1039/c0cc04055j
29.
Takenaka
,
S.
,
Hirati
,
A.
,
Tanabe
,
E.
,
Matsune
,
H.
, and
Kishida
,
M.
, “Preparation of Supported Pt-Co Alloy Nanoparticle Catalysts for the Oxygen Reduction Reaction by Coverage with Silica,”
J. Catal.
, Vol.
274
,
2010
, pp.
228
238
. https://doi.org/10.1016/j.jcat.2010.07.005
30.
Jeyabharathi
,
C.
,
Venkateshkumar
,
P.
,
Mathiyarasu
,
J.
, and
Phani
,
K. L. N.
, “Carbon-Supported Palladium-Polypyrrole Nanocomposite for Oxygen Reduction and Its Tolerance to Methanol,”
J.Electrochem. Soc.
, Vol.
157
,
2010
, pp.
B1740
B1745
. https://doi.org/10.1149/1.3489266
31.
Seo
,
M. H.
,
Lim
,
E. J.
,
Choi
,
S. M.
,
Kim
,
H. J.
, and
Kim
,
W. B.
, “Stability Enhancement of Pd Catalysts by Compositing with Polypyrrole Layer for Polymer Electrolyte Fuel Cell Electrodes,”
Top. Catal.
, Vol.
53
,
2010
, pp.
678
685
. https://doi.org/10.1007/s11244-010-9505-9
32.
Ledesma-Garcia
,
J.
,
Escalante-Garcia
,
I. L.
,
Chapman
,
T. W.
,
Arriaga
,
L. G.
,
Baglio
,
V.
,
Antonucci
,
V.
,
Aricò
,
A. S.
,
Ornelas
,
R.
, and
Godinez
,
L. A.
, “Pt Dendrimer Nanocomposites for Oxygen Reduction Reaction in Direct Methanol Fuel Cells,”
J. Solid State Electrochem.
, Vol.
14
,
2010
, p. 835. https://doi.org/10.1007/s10008-009-0862-x
33.
Zhang
,
G.-R.
and
Xu
,
B.-Q.
, “Surprisingly Strong Effect of Stabilizer on the Properties of Au Nanoparticles and Pt^Au Nanostructures in Electrocatalysis,”
Nanoscale
, Vol.
2
,
2010
, pp.
2798
2804
. https://doi.org/10.1039/c0nr00295j
34.
Kuhn
,
J. N.
,
Huang
,
W.
,
Tsung
,
C.-K.
,
Zhang
,
Y.
, and
Somorjai
,
G. A.
, “Structure Sensitivity of Carbon-Nitrogen Ring Opening: Impact of Platinum Particle Size from below 1 to 5 nm upon Pyrrole Hydrogenation Product Selectivity over Monodisperse Platinum Nanoparticles Loaded onto Mesoporous Silica,”
J. Am. Chem. Soc.
, Vol.
130
,
2008
, pp.
14026
14027
. https://doi.org/10.1021/ja805050c
35.
Borodko
,
Y.
,
Lee
,
H. S.
,
Joo
,
S. H.
,
Zhang
,
Y.
, and
Somorjai
,
G. A.
, “Spectroscopic Study of the Thermal Degradation of PVP-Capped Rh and Pt Nanoparticles in H2 and O2 Environments,”
J.Phys. Chem. C
, Vol.
114
,
2010
, pp.
1117
1126
. https://doi.org/10.1021/jp909008z
36.
Borodko
,
Y.
,
Habas
,
S. E.
,
Koebel
,
M. M.
,
Yang
,
P.
,
Frei
,
H.
, and
Somorjai
,
G. A.
, “Probing the Interaction of Poly(vinylpyrrolidone) with Platinum Nanocrystals by UV-Raman and FTIR,”
J. Phys. Chem. B
, Vol.
110
,
2006
, pp.
23052
23059
. https://doi.org/10.1021/jp063338+
37.
Borodko
,
Y.
,
Humphrey
,
S. M.
,
Tilley
,
T. D.
,
Frei
,
H.
, and
Somorjai
,
G. A.
, “Charge-Transfer Interaction of Poly(vinylpyrrolidone) with Platinum and Rhodium Nanoparticles,”
J. Phys. Chem. C
, Vol.
111
,
2007
, pp.
6288
6295
. https://doi.org/10.1021/jp068742n
This content is only available via PDF.
You do not currently have access to this content.