Abstract

This paper presents three models that were developed explicitly for predicting the creep-fatiguebehavior of Mod.9Cr-1Mo steel. The Cyclic Softening Model incorporated tensile strain hardening and creep deformation, and described the cyclic stress variation as a function of cycle number under hold-time creep-fatigue loading. The Stress Relaxation Model predicted the stress relaxation curve during the hold time of cyclic loading, based on the creep properties of the material. The Interactive Damage Rate Equation predicted the hold-time creep-fatigue life using a methodology, in which the key materials parameters were determined by the creep properties and continuous fatigue data. The model predictions captured the trends of creep-fatigue interaction in Mod.9Cr-1Mo steel, and were in good agreement with experimental data in the literature.

References

1.
Klueh
,
R. L.
, and
Harries
,
D. R.
,
2001
,
High-Chromium Ferritic and Martensitic Steels for Nuclear Applications,
ASTM International
,
West Conshohocken, PA
.
2.
Natesan
,
K.
,
Li
,
M.
,
Chopra
,
O. K.
,
Majumdar
,
S.
, “
Sodium Effects on Mechanical Performance and Consideration in High Temperature Structural Design for Advanced Reactors
,”
J. Nucl. Mater.
, Vol.
392
,
2009
, p. 243. https://doi.org/10.1016/j.jnucmat.2009.03.039
3.
ASME NH-Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NH, Class 1 Components in Elevated Temperature Service, American Society of Mechanical Engineers, New York,
2009
.
4.
Asayama
,
T.
and
Tachibana
,
Y.
, “
Creep-Fatigue Data and Existing Evaluation Procedures for Grade 91 and Hastelloy XR
,” STP-NU-018, ASME Standards Technology, 2009.
5.
Kim
,
S.
, and
Weertman
,
J. R.
, “
Investigation of Microstructural Changes in Ferritic Steel Caused by High Temperature Fatigue
,”
Metall. Trans. A
, Vol.
19A
,
1988
, p. 999. https://doi.org/10.1007/BF02628384
6.
Kannan
,
R.
,
Sandhya
,
R.
,
Ganesan
,
V.
,
Valsan
,
M.
,
Bhanu Sankara Rao
,
K.
, “
Effect of Sodium Environment on the Low Cycle Fatigue Properties of Modified 9Cr-1Mo Ferritic Martensitic Steel
J. Nucl. Mater.
, Vol.
384
,
2009
, p. 286. https://doi.org/10.1016/j.jnucmat.2008.11.036
7.
Shankar
,
V.
,
Valsan
,
M.
,
Bhanu Sankara Rao
,
K.
,
Kannan
,
R.
,
Mannan
,
S. L.
,
Pathak
,
S. D.
, “
Low Cycle Fatigue Behavior and Microstructural Evolution of Modified 9Cr-1Mo Ferritic Steel
,”
Mater. Sci. Eng. A
, Vol.
437
,
2006
, p. 413. https://doi.org/10.1016/j.msea.2006.07.146
8.
Marshall
,
P.
,
Austenitic Stainless Steels: Microstructure and Mechanical Properties
,
Elsevier Applied Science Publishers
,
New York
,
1984
.
9.
Jaske
,
C. E.
,
Leis
,
B. N.
, and
Pugh
,
C. E.
, “
Monotonic and Cyclic Stress-Strain Response of Annealed 2.25Cr-1Mo Steel
,”
>Structural Materials for Service at Elevated Temperatures in Nuclear Power Generation
,
A. O.
Schaefer
, Ed.,
ASME
,
New York
,
1975
, p. 191.
10.
Matsuoka
,
S.
,
Kim
,
S.
, and
Weertman
,
J. R.
, “
Mechanical and Microstructural Behavior of a Ferritic Stainless Steel Under High Temperature Cycling
Proc. Topical Conference on Ferritic Alloy for Use in Nuclear Energy Technologies, Snowbird, UT, June 19-23, 1983
,
Metallurgical Society of the American Institute of Mining, Metallurgical, and Petroleum Engineers
,
New York
,
1984
, p. 507.
11.
Sauzay
,
M.
,
Brillet
,
H.
,
Monnet
,
I.
,
Mottot
,
M.
,
Barcelo
,
F.
,
Fournier
,
B.
, and
Pineau
,
A.
, “
Cyclically Induced Softening Due to Low-Angle Boundary Annihilation in a Martensitic Steel
,”
Mater. Sci. Eng. A
, Vol.
400–401
,
2005
, p. 241. https://doi.org/10.1016/j.msea.2005.02.092
12.
Sauzay
,
M.
,
Fournier
,
B.
,
Mottot
,
M.
,
Pineau
,
A.
, and
Monnet
,
I.
, “
Cyclic Softening of Martensitic Steels at High Temperature - Experiments and Physically Based Modeling
,”
Mater. Sci. Eng. A
, Vol.
483–484
,
2008
, p. 410. https://doi.org/10.1016/j.msea.2006.12.183
13.
Fourier
,
B.
,
Sauzay
,
M.
, and
Pineau
,
A.
, “
Micromechanical Model of the High Temperature Cyclic Behavior of 9-12%Cr Martensitic Steels
,”
Int. J. Plasti.
(in press).
14.
Asayama
,
T.
, and
Tachibana
,
Y.
, “
DOE/ASME GEN IV Materials Project Task 5 Report: Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR
,” submitted to ASME ST LLC,
2007
.
15.
Taira
,
S.
,
Creep in Structures
,
N. J.
Hoff
, Ed.,
Springer-Verlag
,
Berlin
,
1962
, p. 96.
16.
Spera
,
D. A.
, “
Calculation of Thermal Fatigue Life Based on Accumulated Creep Damage
,”
NASA Technical Note NASA-TN-D-5489
, National Aronautics and Space Administration, Oct. 1969.
17.
Coffin
,
L. F.
,
Symposium on Creep-Fatigue Interaction, ASME MPC-3
,
R. M.
Curran
, Ed.,
American Society of Mechanical Engineers
,
New York
,
1976
, p. 349.
18.
Manson
,
S. S.
,
Halford
,
G. R.
, and
Hirschberg
,
M. H.
, “Creep-Fatigue Analysis by Strain-Range Partitioning,”
Proc. 1st Symp. on Design for Elevated Temperature Environment
,
San Francisco
, May 10–12,
1971
, p. 12.
19.
Majumdar
,
S.
, and
Maiya
,
P. S.
, “
A Damage Equation for Creep-Fatigue Interaction
,”
Symp. on Creep-Fatigue Interaction, ASME MPC-3
,
R. M.
Curran
, Ed.,
American Society of Mechanical Engineers
,
New York
,
1976
, p. 323.
20.
Jetter
,
R.
,
Fatigue, Fracture, and High Temperature Design Methods in Pressure Vessel and Piping
, Vol.
5
, No. H01146,
ASME Publishing
,
New York
,
1998
.
21.
Jing
,
J.
,
Guang
,
M.
,
Yi
,
S.
, and
Xia
,
S.
, “
An Effective Continuum Damage Mechanics Model for Creep-Fatigue Life Assessment of a Steam Turbine Rotor
,”
Int. J. Pressure Vessels Piping
, Vol.
80
,
2003
, p. 389. https://doi.org/10.1016/S0308-0161(03)00070-X
22.
Asayama
,
T.
, and
Jetter
,
R.
, “
An Overview of Creep-Fatigue Damage Evaluation Methods and an Alternative Approach
,”
PVP 2008
,
ASME Publishing
,
New York
,
2008
, p. 719.
23.
Nielsen
,
H. S.
, and
Tvergaard
,
V.
, “Intergranular Cavitation Under Creep-Fatigue Interaction”
Int. J. Damage Mech.
, Vol.
7
,
1998
, p. 3. https://doi.org/10.1177/105678959800700101
24.
Fournier
,
B.
,
Sauzay
,
M.
,
Barcelo
,
F.
,
Rauch
,
E.
,
Renault
,
A.
, Cozzika, T., Dupuy, L. and Pineau, A., “Creep-Fatigue Interactions in a 9 pct Cr-1 pct Mo Martensitic Steel: Part II. Microstructural Evolutions,”
Metall. Mater. Trans.
, Vol.
40A
,
2009
, p. 330. https://doi.org/10.1007/s11661-008-9687-y
25.
Aktaa
,
J.
, and
Schmitt
,
R.
, “High Temperature Deformation and Damage Behavior of RAFM Steels Under Low Cycle Fatigue Loading: Experiments and Modeling,”
Fus. Eng. Des.
, Vol.
81
,
2006
, p. 2221. https://doi.org/10.1016/j.fusengdes.2006.03.002
26.
Aktaa
,
J.
, and
Petersen
,
C.
, “Challenges in the Constitutive Modeling of the Thermo-Mechanical Deformation and Damage Behavior of EUROFER 97,”
Eng. Fract. Mech.
, Vol.
76
,
2009
, p. 1474. https://doi.org/10.1016/j.engfracmech.2008.12.017
27.
Aktaa
,
J.
,
Weick
,
M.
, and
Petersen
,
C.
, “Reduced Softening of EUROFER 97 Under Thermomechanical and Multiaxial Fatigue Loading and its Impact on the Design Rules,”
J. Nucl. Mater.
, Vol.
386–388
,
2009
, p. 911. https://doi.org/10.1016/j.jnucmat.2008.12.228
28.
Sauzay
,
M.
,
Fournier
,
B.
,
Mottot
,
M.
,
Pineau
,
A.
, and
Monnet
,
I.
, “Cyclic Softening of Martensitic Steels at High Temperature - Experiments and Physically Based Modelling,”
Mater. Sci. Eng. A
, Vol.
483–484
,
2008
, p. 410.
29.
Feltham
,
P.
, “Stress Relaxation in Alpha-Iron at Low Temperatures,”
Phil. Mag.
, Vol.
6
,
1961
, p.847.
30.
Ruggles
,
M. B.
, and
Ogata
,
T.
, “
Creep-Fatigue Criteria and Inelastic Behavior of Modified 9Cr-1Mo Steel at Elevated Temperatures
,”
ORNL/M-3198
,
Oak Ridge National Laboratory
,
Oak Ridge, TN
,
1994
.
31.
Majumdar
,
S.
, and
Maiya
,
P. S.
, “
Inelastic Behavior of Pressure Vessel and Piping Components
,”
PVP-PB-028
,
American Society of Mechanical Engineers
,
New York
,
1978
, p.
43
54
.
32.
Majumdar
,
S.
,
Maiya
,
P. S.
, “
Creep-Fatigue Interactions in an Austenitic Stainless Steel
,”
Can. Metall. Q.
, Vol.
18
,
1979
, p. 57.
33.
Majumdar
,
S.
, and
Maiya
,
P. S.
, “A Mechanistic Model for Time-Dependent Fatigue,”
J. Eng. Mater. Technol.
, Vol.
102
,
1980
, p. 159. https://doi.org/10.1115/1.3224774
34.
Majumdar
,
S.
,
Maiya
,
P. S.
, and
Booker
,
M. K.
, “
A Review of Time-Dependent Fatigue Behavior and Life Prediction for Type 304 Stainless Steel and 2.25Cr-1Mo Steel
,”
ANL-81-20
,
Argonne National Laboratory
,
Argonne, IL
,
1981
.
35.
National Research Institute for Metals, NRIM Fatigue Data Sheet, No. 78, Japan, 1993.
36.
National Research Institute for Metals, NRIM Fatigue Data Sheet, No. 43, Japan, 1996.
This content is only available via PDF.
You do not currently have access to this content.