Abstract

It has been established in previous works that corrosion kinetics in primary water of various zirconium alloys are periodic. Each period is associated with a layer of cracks parallel to the metal-oxide interface. These observations have been made either in autoclave or in pile. This indicates that corrosion processes in autoclave and under irradiation are of similar nature though their absolute kinetics might be different. Taking advantage of this correlation between cracks and corrosion kinetics, the present work aims at identifying the main microstructural parameters controlling cracks appearance in the oxide layer under well-controlled conditions. In order to achieve this, Zircaloy-4 was heat-treated to obtain various metallurgical states (stress-relieved versus recrystallised with different grain sizes) followed by corrosion tests in primary water. The key metallurgical parameters for the various conditions have been analysed (texture, precipitate sizes and grain sizes and distributions) using electron microscopy and synchrotron X-ray diffraction techniques. Corrosion kinetics of the various Zircaloy-4 microstructures are distinct as expected from the literature. Crack morphology in the oxide layer has been analysed and quantified using a dual beam scanning electron microscope/focused ion beam. Crack layers are evident even at small scale of observation. Three dimensional (3D) images of the oxide structure are presented. Cracks observed in this way are typically penny-shaped with a radius of about 100 nm. Near the metal-oxide interface, they are mainly found at the top of metal protrusions in the oxide. The roughness of the metal-oxide interface was measured. It does not exhibit any periodicity. The residual stresses in the oxide layers were measured by high energy (44 keV) synchrotron X-ray diffraction in transmission mode. Large compressive stresses (∼−1 GPa), changing with the metallurgical state and through the oxide scale thickness, were measured. The residual stresses in the oxide layers were measured by high energy (44 keV) synchrotron X-ray diffraction in transmission mode. Large compressive stresses (∼−1 GPa), changing with the metallurgical state and through the oxide scale thickness, were measured. A model of the oxide breaking at the point of transition has been developed. It is based on mechanical considerations and the existence of compressive stress in the oxide layer.

References

1.
Griggs
,
B.
,
Maffci
,
H. P.
, and
Shannon
,
D.
, “
Multiple Rate Transitions in the Aqueous Corrosion of Zircaloy
,”
J. Electrochem. Soc.
, Vol.
109
,
1962
, pp.
665
668
. https://doi.org/10.1149/1.2425526
2.
Bryner
J. S.
, “
The Cyclic Nature of Corrosion of Zircaloy-4 in 633 K Water
,”
J. Nucl. Mater.
, Vol.
82
,
1979
, pp.
84
101
. https://doi.org/10.1016/0022-3115(79)90042-4
3.
Schefold
,
J.
,
Lincot
,
D.
,
Ambard
,
A.
, and
Kerrec
,
O.
, “
The Cyclic Nature of Corrosion of Zr and Zr-Sn in High Temperature Water (633K): A Long Term in Situ Impedance Spectroscopic Study
,”
J.Electrochem. Soc.
, Vol.
150
,
2003
, pp.
B451
B461
. https://doi.org/10.1149/1.1602079
4.
Yilmazbayhan
,
A.
,
Motta
,
A. T.
,
Comstock
,
R. J.
,
Sabol
,
G. P.
,
Lai
,
B.
, and
Cai
,
Z.
, “
Structure of Zirconium Alloy oxides Formed in Pure Water Studied with Synchrotron Radiation and Optical Microscopy: Relation to Corrosion Rate
,”
J. Nucl. Mater.
, Vol.
324
,
2004
, pp.
6
22
. https://doi.org/10.1016/j.jnucmat.2003.08.038
5.
Bouineau
,
V.
,
Ambard
,
A.
,
Bénier
,
G.
,
Pêcheur
,
D.
,
Godlewski
,
J.
,
Fayette
,
L.
, and
Duverneix
,
T.
, “
ANew Model to Predict the Oxidation Kinetics of Zirconium Alloys in a Pressurized Water Reactor
,” J. ASTM Int., Vol. 5, Paper No. JAI101312.
6.
Pilling
,
N. B.
and
Bedworth
,
R. E.
, “
The Oxidation of Metals at High Temperatures
,”
Journal of the Institute of Metals
, Vol.
29
,
1923
, pp.
529
591
.
7.
Roy
,
C.
and
Burgess
,
B.
, “
A Study of the Stress Generated in Zirconia Films During the Oxidation of Zirconium Alloys
,”
Oxydation of Metals
, Vol.
2
,
1970
, pp.
235
261
. https://doi.org/10.1007/BF00614620
8.
Evans
,
H. E.
,
Norfolk
,
D. J.
, and
Swan
,
T.
, “
Perturbation of Parabolic Kinetics Resulting From the Accumulation of the Stress in Protective Oxide Layers
,”
J. Electrochem. Soc.
, Vol.
125
,
1978
, pp.
1180
1184
. https://doi.org/10.1149/1.2131644
9.
Bossis
,
P.
,
L.
G.
,
Barberis
,
P.
,
Iltis
,
X.
, and
Lefebvre
,
F.
, “
Multi-Scale Characterization of the Metal-Oxide Interface of Zirconium Alloys
,”
Zirconium in the Nuclear Industry, ASTM-STP
1354,
G. P.
Sabol
and
G. D.
Moan
, eds.,
ASTM International West Conshohocken
,
PA
,
2000
, pp.
918
945
.
10.
Parise
,
M.
,
Sicardy
,
O.
, and
Cailletaud
,
G.
, “
Modelling of the Mechanical Behavior of the Metal-Oxide System During Zr Alloy Oxidation
,”
J. Nucl. Mater.
, Vol.
256
,
1998
, pp.
35
46
. https://doi.org/10.1016/S0022-3115(98)00045-2
11.
Withers
,
P. J.
,
Preuss
,
M.
,
Steuwer
A.
, and
Pang
,
J. W.
, “
Methods for Obtaining Strain-Free Lattice Parameter When Using Diffraction to Determine Residual Stress
,”
J. Appl. Crystallogr.
, Vol.
40
,
2007
, pp.
891
904
. https://doi.org/10.1107/S0021889807030269
12.
Touloukian
,
Y. S.
, Kirby, R. K., Taylor, R. E., and Lee, T. Y. R.,
Thermophysical Properties of Matter: Thermal Expansion – Vol. 13
,
Plenum Press
,
NY
,
1975
, p. 451.
13.
Tenckhoff
,
E.
, “
Deformation Mechanisms, Texture and Anisotropy in Zirconium and Zircaloy
,”
ASTM Spec. Tech. Publ.
, Vol.
966
,
ASTM International
,
Philadelphia, PA
,
1988
.
14.
Thomazet
,
J.
,
Dalmais
,
A.
,
Bossis
,
D.
,
Godlewski
,
J.
,
Blat
,
M.
, and
Miquet
,
A.
, “
The Corrosion of the Alloy M5TM: An Overview
,”
Proceedings of IAEA Technical Committee Meeting on Behaviour of High Corrosion Resistance Zr-Based Alloys
,
Buenos Aires
, Oct. 25–28,
2005
.
15.
Ly
,
A.
,
Ambard
,
A.
, and
Bréchet
,
Y.
, “
On the Evolution of Zirconium-Alloy/Zirconia Interface Morphology During a Corrosion Experiment in High Temperature Water
,” J. Nucl. Mater. (submitted).
16.
Nayak
,
P. R.
, “
Random Process Model of Rough Surfaces
,”
J. Lubr. Technol.
, Vol.
93
,
1971
, pp.
398
407
. https://doi.org/10.1115/1.3451608
17.
Longuet-Higgins
M. S.
, “
Statistical Properties of an Isotropic Random Surface
,”
Philos. Trans. R.Soc. London, Ser. A
, Vol.
A250
,
1957
, pp.
157
174
.
18.
S-K.
Chan
,
Y.
Fang
,
M.
Grimsditch
,
Z.
Li
,
M. V.
Nevitt
,
W. M.
Robertson
, and
E. S.
Zouboulis
, “
Temperature Dependence of the Elastic Moduli of Monoclinic Zirconia
,”
Journal of the American Ceramic Society
, Vol.
74
,
1991
, pp.
1742
1744
. https://doi.org/10.1111/j.1151-2916.1991.tb07177.x
19.
Parise
,
M.
,
1996
, “
Mécanismes de Corrosion des Alliages de Zirconium: Etude des Cinétiques Initiales d’Oxydation et du Comportement Mécanique du Système Métal-Oxyde
,”
Ph.D. thesis
,
Ecole Nationale Supérieure des Mines de Paris
,
Paris
.
20.
Petigny
,
N.
,
Barberis
,
P.
,
Lemaignan
C.
,
Valot
Ch.
, and
Lallemant
,
M.
, “
In Situ XRD Analysis of the Oxide Layers Formed by Oxidation at 743K on Zircaloy-4 and Zr-1NbO
,”
J. Nucl. Mater.
, Vol.
280
,
2000
, pp.
318
330
. https://doi.org/10.1016/S0022-3115(00)00051-9
21.
Ni
,
N.
,
Lozano-Perez
,
S.
,
Jenkins
,
M. L.
,
English
,
C.
,
Smith
,
G. D. W.
,
Sykes
,
J. M.
, and
Grovenor
,
C. R. M
, “
Porosity in Oxides on Zirconium Fuel Cladding Alloys, and its Importance in Controlling Oxidation Rates
,”
Scr. Mater.
, Vol.
62
,
2010
, pp.
564
567
. https://doi.org/10.1016/j.scriptamat.2009.12.043
22.
Eshelby
,
J.
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London
, Vol.
A241
,
1957
, pp.
376
396
.
23.
Lamy
,
M.
,
Ambard
,
A.
,
Bréchet
,
Y.
, and
Kerrec
,
O.
, “
Coupling Corrosion and Plasticity: The Example of Zircaloy-4
,”
EUROMAT
,
Rimini
,
Italy
, June 10–14,
2001
, Federation of European Materials Societies, Associazione Italiana di Metallurgia, Paper No. 747.
24.
Balint
,
D. S.
,
Hutchinson
,
J. W.
, “
Undulation Instability of a Compressed Elastic Film on a Nonlinear Creeping Substrate
,”
Acta Mater.
, Vol.
51
,
2003
, pp.
3965
3983
. https://doi.org/10.1016/S1359-6454(03)00221-0
25.
Balint
,
D. S.
and
Hutchinson
,
J. W.
, “
An Analytical Model of Rumpling in Thermal Barrier Coatings
,”
J. Mech. Phys. Solids
, Vol.
53
,
2005
, pp.
949
973
. https://doi.org/10.1016/j.jmps.2004.11.002
26.
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
Théorie de l’élasticité
,
Librairie Polytechnique Ch. Béranger
,
Paris
,
1961
, p. 28.
27.
Robinet
,
P.
,
1995
,
Etude Expérimentale et Modélisation du Comportement Viscoplastique Anisotrope du Zircaloy-4 Dans Deux états Métallurgiques
, Ph.D. thesis,
Université de Franche-Comté
.
28.
Delobelle
,
P.
,
Robinet
,
P.
,
Geyer
,
P.
, and
Bouffioux
,
P.
, “
A Model to Describe the Anisotropic Viscoplastic Behaviour of Zircaloy-4 Tubes
,”
J. Nucl. Mater.
, Vol.
238
,
1996
, pp.
135
162
. https://doi.org/10.1016/S0022-3115(96)00450-3
29.
Hauffe
,
K.
,
Oxidation of Metals
,
Plenum Press
,
NY
,
1965
.
30.
Ammar
,
K.
,
2010
, “
Modelling and Simulation of Phase Transformation-Mechanics Coupling Using a Phase Field Method
,” Ph.D. thesis,
Ecole nationale supérieure des mines de Paris
.
This content is only available via PDF.
You do not currently have access to this content.