Abstract

Experiments on immobilization of cellulase complex (cellulase, Novozymes) and enzyme complex (cellulases and hemicellulases, Novozymes) were performed on porous Siran beads using covalent and non-covalent bonding methods. Free enzyme complex was used for hydrolyzing various pretreated biomass such as corn stover, distillers dried grain with solubles, switch grass and blue stem grass. Maximum activity of enzyme complex was found with corn stover and was used as a substrate for measuring cellulase and hemicellulases activities. Protein loading for immobilized cellulase complex and enzyme complex on Siran carriers was found in the range of 10.776–18.000 % and 19.932–23.082 %, respectively. Activity loading for immobilized cellulase complex with avicel was in the range of 16.610–22.026 %. For enzyme complex, activity loading was found in the range of 43.558–61.222 %, 8.274–19.124 %, and 7.180–14.114 % with avicel, xylan, and corn stover as substrates, respectively. Recycling experiments for immobilized cellulase complex and enzyme complex were carried out using various substrates, and the residual enzyme activity was measured after the third cycle. Carbodiimide bonded cellulase complex retained more residual enzyme activity with avicel (49.460 %), which indicates a good cross linker for cellulase immobilization. The enzyme complex bonded to carbodiimide, and glutaraldehyde retained residual activity of 44.160 % with xylan and 73.230 % with corn stover, respectively. Recycling studies showed greater retention in residual enzyme activity with covalent bonded enzymes than non-covalent bonded enzymes. Glutaraldehyde and carbodiimide were found to be effective cross linkers for immobilizing both cellulase and hemicellulases in covalent bonding method.

References

1.
Rosentrater
,
K. A.
, “
Corn Ethanol Co-Products-Some Current Constraints and Potential Opportunities
,”
Int. Sugar J.
, Vol.
109
, No.
1307
,
2007
, pp.
687
697
.
2.
Howard
,
R. L.
,
Abotsi
E.
,
Jansen van Rensburg
,
E. L.
, and
Howard
,
S.
, “
Lignocellulose Biotechnology: Issues of Bioconversion and Enzyme Production
,”
African J. Biotechn.
, Vol.
21
, No.
12
,
2003
, pp.
602
619
.
3.
Bothast
,
R. J.
and
Schlicher
,
M. A.
, “
Biotechnological Process for Conversion of Corn into Ethanol
,”
Appl. Microbiol. Biotechnol.
 0175-7598, Vol.
67
, No.
1
,
2005
, pp.
19
25
. https://doi.org/10.1007/s00253-004-1819-8
4.
Ahmed
,
Z.
,
Banu
,
H.
,
Rahman
,
M. M.
,
Akhter
,
F.
, and
Haque
,
M. S.
, “
Microbial Activity on the Degradation of Lignocellulosic Polysaccharides
,”
J. Bio. Sci.
, Vol.
1
, No.
10
,
2001
, pp.
993
997
. https://doi.org/10.3923/jbs.2001.993.997
5.
Brown
,
R. C.
,
Biorenewable Resources; Engineering New Products from Agriculture
,
Iowa State Press
,
Ames
,
2003
.
6.
Murashima
,
K.
,
Kosugi
,
A.
, and
Doi
,
H. R.
, “
Synergistic Effects of Cellulosomal Xylanase and Cellulases from Clostridium Cellulovorans on Plant Cell Wall Degradation
,”
J. Bacteriol.
 0021-9193, Vol.
185
, No.
5
,
2003
, pp.
1518
1524
. https://doi.org/10.1128/JB.185.5.1518-1524.2003
7.
Saha
,
B. C.
, “
Hemicellulose Bioconversion
,”
J. Ind. Microbiol. Biotechnol.
 1367-5435, Vol.
30
,
2003
, pp.
279
291
. https://doi.org/10.1007/s10295-003-0049-x
8.
Haltrich
,
D.
,
Nidetzky
,
B.
,
Kulbe
,
K. D.
,
Steiner
,
W.
, and
Zupaneie
,
S.
, “
Production of Fungal Xylanases
,”
Bioresour. Technol.
 0960-8524, Vol.
58
,
1996
, pp.
137
161
. https://doi.org/10.1016/S0960-8524(96)00094-6
9.
Lynch
,
J. M.
,
Slater
,
J. H.
,
Bennett
,
J. A.
, and
Harper
,
S. H. T.
, “
Cellulase Activities of Some Aerobic Microorganisms Isolated from Soil
,”
J. Gen. Microbiol.
 0022-1287, Vol.
127
,
1981
, pp.
231
236
.
10.
Ibrahim
,
A. S. S.
and
El-Diwany
,
A. I.
, “
Isolation and Identification of New Cellulases Producing Thermophilic Bacteria from an Egyptian Hot Spring and Some Properties of the Crude Enzyme
,”
Australian J. Basic Appl. Sci.
, Vol.
1
, No.
4
,
2007
, pp.
473
478
.
11.
Beg
,
Q. K.
,
Kapoor
,
M.
,
Mahajan
,
L.
, and
Hoondal
,
G. S.
, “
Microbial Xylanases and Their Industrial Applications: A Review
,”
Appl. Microbiol. Biotechnol.
 0175-7598, Vol.
56
,
2001
, pp.
326
338
. https://doi.org/10.1007/s002530100704
12.
Woodward
,
J.
and
Zachry
,
G. S.
, “
Immobilization of Cellulase Through its Carbohydrate Side Chains—A Rationale for Its Recovery and Reuse
,”
Enzyme Microb. Technol.
 0141-0229, Vol.
4
, No.
4
,
1982
, pp.
245
248
. https://doi.org/10.1016/0141-0229(82)90039-4
13.
Chae
,
H. J.
,
In
,
M.-J.
, and
Kim
,
E. Y.
, “
Optimization of Protease Immobilization by Covalent Binding Using Glutaraldehyde
,”
Appl. Biochem. Biotechnol.
 0273-2289, Vol.
73
, No.
2–3
,
1998
, pp.
195
204
. https://doi.org/10.1007/BF02785655
14.
Sinegani
,
A. A. S.
,
Emtiazi
,
G
, and
Shariatmadari
,
S.
, “
Sorption and Immobilization of Cellulase on Silicate Clay Minerals
,”
J. Colloid Interface Sci.
 0021-9797, Vol.
290
, No.
1
,
2005
, pp.
39
44
. https://doi.org/10.1016/j.jcis.2005.04.030
15.
Suvajittanont
,
W.
,
Bothwell
,
M. K.
, and
McGuire
,
J.
, “
Adsorption of Trichoderma reesei CBHI Cellulase on Silanized Silica
,”
Biotechnol. Bioeng.
 0006-3592, Vol.
69
, No.
6
,
2000
, pp.
688
692
. https://doi.org/10.1002/1097-0290(20000920)69:6<688::AID-BIT13>3.0.CO;2-1
16.
Fadda
,
M. B.
,
Dessi
,
M. R.
,
Maurici
,
R.
,
Rinaldi
,
A.
, and
Satta
,
G.
, “
Highly Efficient Solubilization of Natural Lignocellulosic Materials by a Commercial Cellulase Immobilized on Various Solid Supports
,”
Appl. Microbiol. Biotechnol.
 0175-7598, Vol.
19
,
1984
, pp.
306
311
. https://doi.org/10.1007/BF00253776
17.
Chakrabarti
,
A. C.
and
Storey
,
K. B.
, “
Immobilization of Cellulase Using Polyurethane Foam
,”
Appl. Biochem. Biotechnol.
 0273-2289, Vol.
19
,
1988
, pp.
189
207
. https://doi.org/10.1007/BF02921483
18.
Park
,
J. W.
, “
Improvement of Cellulase Stability by the Covalent Modification of Copolymer of Polyalkylene Derivative
,”
Biotechnol. Tech.
 0951-208X, Vol.
10
, No.
6
,
1996
, pp.
457
462
. https://doi.org/10.1007/BF00174233
19.
Afsahi
,
B.
,
Kazemi
,
A.
,
Kheriolomoom
,
A.
, and
Netaji
,
S.
, “
Immobilizataion of Cellulase on Non-Porous Ultrafine Silica Particles
,”
Scientia Iranica J.
, Vol.
12
, No.
4
,
2007
, pp.
379
383
.
20.
Busto
,
M. D.
,
Ortega
,
N.
, and
Perez-Mateos
,
M.
, “
Characterization of Microbial Endo-β-Glucanase Immobilized in Alginate Beads
,”
Acta Biotechnol.
 0138-4988, Vol.
18
, No.
3
,
1998
, pp.
189
200
. https://doi.org/10.1002/abio.370180303
21.
Abdel-Naby
,
M. A.
, “
Immobilization of Aspergillus niger NRC 107 Xylanase and β-Xylosidase, and Properties of the Immobilized Enzymes
,”
Appl. Biochem. Biotechnol.
 0273-2289, Vol.
38
, No.
1–2
,
1993
, pp.
69
81
. https://doi.org/10.1007/BF02916413
22.
Dumitriu
,
S.
and
Chornet
,
E.
, “
Immobilization of Xylanase in Chitosan-Xanthan Hydrogels
,”
Biotechnol. Prog.
 8756-7938, Vol.
13
, No.
5
,
1997
, pp.
539
545
. https://doi.org/10.1021/bp970059i
23.
Kapoor
,
M.
and
Kuhad
,
R. C.
, “
Immobilization of Xylanase from Bacillus pumilus Strain MK001 and Its Application in Production of Xylo-Oligosaccharides
,”
Appl. Biochem. Biotechnol.
 0273-2289, Vol.
142
, No.
2
,
2007
, pp.
125
138
. https://doi.org/10.1007/s12010-007-0013-8
24.
Ai
,
Z.
,
Jiang
,
Z.
,
Li
,
L.
,
Deng
,
W.
,
Kusakabe
,
I.
, and
Li
,
H.
, “
Immobilization of Streptomyces olivaceoviridis E-86 Xylanase on Eudragit S-100 for Xylo-Oligosaccharide Production
,”
Process Biochem. (Oxford, U.K.)
 1359-5113, Vol.
40
, No.
8
,
2005
, pp.
2707
2714
. https://doi.org/10.1016/j.procbio.2004.12.006
25.
Kang
,
S.-W.
,
Kim
,
S.-W.
, and
Lee
,
J.-S.
, “
Production of Cellulase and Xylanase in a Bubble Column Using Immobilized Aspergillus Niger KKS
,”
Appl. Biochem. Biotechnol.
 0273-2289, Vol.
53
, No.
2
,
1995
, pp.
101
106
. https://doi.org/10.1007/BF02788601
26.
Roy
,
P. K.
,
Roy
,
U.
, and
Vora
,
V. C.
, “
Hydrolysis of Wheat Bran, Rice Bran and Jute Powder by Immobilized Enzymes from Macrophomina phaseolina
,”
World J. Microbiol. Biotechnol.
 0959-3993, Vol.
9
, No.
2
,
1993
, pp.
164
167
. https://doi.org/10.1007/BF00327828
27.
Shriver-Lake
,
L. C.
,
Gammeter
,
W. B.
,
Bang
,
S. S.
, and
Pazirandeh
,
M.
, “
Covalent Binding of Genetically Engineered Microorganisms to Porous Glass Beads
,”
Anal. Chim. Acta
 0003-2670, Vol.
470
,
2002
, pp.
71
78
. https://doi.org/10.1016/S0003-2670(02)00540-8
28.
Soares
,
C. M. F.
,
Santana
,
M. H. A.
,
Zanin
,
G. M.
, and
Castro
,
H. F.
, “
Covalent Coupling Method for Lipase Immobilization on Controlled Pore Silica in the Presence of Non Enzymatic Proteins
,”
Biotechnol. Prog.
 8756-7938, Vol.
19
, No.
3
,
2003
, pp.
803
807
. https://doi.org/10.1021/bp025779q
29.
Almeida
,
C.
,
Branyik
,
T.
,
Moradas-Ferreira
,
P.
, and
Teixeira
,
J.
, “
Use of Two Different Carriers in a Packed Bed Reactor for Endopolygalacturonase Production by a Yeast Strain
,”
Process Biochem. (Oxford, U.K.)
 1359-5113, Vol.
40
,
2005
, pp.
1937
1942
. https://doi.org/10.1016/j.procbio.2004.07.008
30.
Srivastava
,
P.
and
Kundu
,
S.
, “
A Comparative Evaluation of Cephalosporin C Producing Various Immobilization Modes
,”
J. Gen. Appl. Microbiol.
 0022-1260, Vol.
44
,
1998
, pp.
113
117
. https://doi.org/10.2323/jgam.44.113
31.
Lowry
,
O. H.
,
Rosebrough
,
N. J.
,
Farr
,
A. L.
, and
Randall
,
R. J.
, “
Protein Measurement with the Folin-Phenol Reagents
,”
J. Biol. Chem.
 0021-9258, Vol.
193
,
1951
, pp.
265
275
.
32.
Miller
,
G. L.
, “
Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar
,”
Anal. Chem.
 0003-2700, Vol.
31
,
1959
, pp.
426
428
. https://doi.org/10.1021/ac60147a030
33.
Fieller
,
E. C.
, “
Some Problems in Interval Estimation
,”
J. R. Stat. Soc. Ser. B (Methodol.)
 0035-9246, Vol.
16
, No.
2
,
1954
, pp.
175
185
.
34.
Saville
,
B. A.
,
Khavkine
,
M.
,
Seetharam
,
G.
,
Marandi
,
B.
, and
Zuo
,
Y.-L.
, “
Characterization and Performance of Immobilized Amylase and Cellulase
,”
Appl. Biochem. Biotechnol.
 0273-2289, Vol.
113-116
,
2004
, pp.
251
259
. https://doi.org/10.1385/ABAB:113:1-3:251
35.
Betancor
,
L.
,
Lopez-Gallego
,
F.
,
Hidalgo
,
A.
,
Alonso-Morales
,
N.
,
Mateo
,
G. D.-O. C.
,
Fernandez-Lafuente
,
R.
, and
Guisan
,
J. M.
, “
Different Mechanisms of Protein Immobilization on Glutaraldehyde Activated Supports: Effect of Support Activation and Immobilization Conditions
,”
Enzyme Microb. Technol.
 0141-0229, Vol.
39
,
2006
, pp.
877
882
. https://doi.org/10.1016/j.enzmictec.2006.01.014
36.
Minovska
,
V.
,
Winkelhausen
,
E.
, and
Kuzmanova
,
S.
, “
Lipase Immobilized by Different Techniques on Various Support Materials Applied in Oil Hydrolysis
,”
J. Serb. Chem. Soc.
 0352-5139, Vol.
70
, No.
4
,
2005
, pp.
609
624
. https://doi.org/10.2298/JSC0504609M
37.
Wu
,
L.
,
Yuan
,
X.
, and
Sheng
,
J.
, “
Immobilization of Cellulase in Nanofibrous PVA Membranes by Electrospinning
,”
J. Membr. Sci.
 0376-7388, Vol.
250
, No.
1–2
,
2005
, pp.
167
173
. https://doi.org/10.1016/j.memsci.2004.10.024
This content is only available via PDF.
You do not currently have access to this content.