Abstract

Railway networks form an integral part of the infrastructure development of a developing country with ever-increasing passenger and freight volume. Increase in train speed, pay load, reliability, and safety are the major thrust areas for railways requiring more stringent mechanical properties such as wear, deformation resistance, and fatigue life from the railway steel. Steel chemistry control and thermomechanical processing significantly affect final properties and performance of the railway steel. For example, for a given steel composition, a number of stable or metastable microstructures can be obtained by controlling heat treatment operations. Conventional rail steels primarily contain nearly eutectoid pearlitic microstructure, which is dependent on the criticality of the application. An overview of the physical metallurgy principles involved during the manufacturing of rail steel will be provided here. The primary focus of this review is thermal processing including quenching and accelerated cooling of the rail steel. In addition, other important aspects relating to design and production of rail steel are discussed, including: impact of steel chemistry on the phase diagram, effect of thermomechanical processing on microstructure, and influence of microstructure or residual stress on mechanical properties.

References

1.
Bhadeshia
,
H. K. D. H.
, “
High Performance Bainitic Steels
,”
Mater. Sci. Forum
 0255-5476, Vols.
500–501
,
2005
, pp.
63
74
. https://doi.org/10.4028/www.scientific.net/MSF.500-501.63
2.
Bhadeshia
,
H. K. D. H.
, “
Novel Steels for Rails
,”
Encyclopedia of Materials Science: Science and Technology
,
K.
Buschow
,
R. W.
Cahn
,
M. C.
Flemings
,
B.
Iischner
,
E. J.
Kramer
, and
S.
Mahajan
, Eds.,
Pergamon
,
United Kingdom
,
2002
, pp.
1
7
.
3.
Bramfitt
,
B. L.
, “
Accelerated Cooling of Rail
,”
Iron & Steelmaker
, Vol.
18
, No.
6
,
1991
, pp.
33
41
.
4.
Bouse
,
G. K.
,
Bernstein
,
I. M.
, and
Stone
,
D. H.
,
Role of Alloying and Microstructure on the Strength and Toughness of Experimental Rail Steels
,
D. H.
Stone
and
G. G.
Knupp
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1978
pp.
145
161
.
5.
Singh
,
U. P.
,
Singh
,
R.
, and
Jha
,
S.
, “
Influence of Microalloying on Fracture Toughness and Wear Resistance of Rail Steel
,”
Scand. J. Metall.
 0371-0459, Vol.
24
,
1995
, pp.
180
186
.
6.
Cramer
,
R. E.
,
AREA Proceedings
,
American Railway Engineering Association
, Vol.
50
,
1949
, pp.
537
539
.
7.
Stone
,
D. H.
, and
Steele
,
R. K.
,
The Effect of Mechanical Properties Upon the Performance of Railroad Rails
,
D. H.
Stone
, and
G. G.
Knupp
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1978
, pp.
21
47
.
8.
Ackert
,
R. J.
, and
Nott
,
M. A.
, “
Accelerated Water Cooling of Railway Rails In-Line with the Hot Rolling Mill
,”
Proceedings of the International Symposium on Accelerated Cooling of Rolled Steel
,
Pergamon Press
,
United Kingdom
,
1988
, pp.
359
372
.
9.
Liscic
,
B.
,
Tensi
,
H. M.
, and
Totten
,
G. E.
, “
Chapter 22—Non-Lubricating Process Fluids: Steel Quenching Technology
,”
ASTM Fuels and Lubricants Handbook—Technology, Properties, Performance and Testing
,
G. E.
Totten
,
S. R.
Westbrook
, and
R. J.
Shah
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2003
, pp.
587
634
.
10.
Bernardin
,
J. D.
, and
Mudawar
,
I.
, “
Validation of the Quench Factor Technique in Predicting Hardness in Heat Treatable Aluminum Alloys
,”
Int. J. Heat Mass Transfer
 0017-9310, Vol.
38
,
1995
, pp.
863
873
. https://doi.org/10.1016/0017-9310(94)00204-9
11.
Künzel
,
T.
, “
Einfluss der Wiederbenetzung auf die Allotrope Modifkatsionsänderung Tauchgekühlter Metallkörper
,” Dissertation, Faculty for Mechanical Engineering,
Technical University of Munich
,
1986
, p. 138.
12.
Stitzelberger-Jakob
,
P.
Härtervorherbestimmung mit Hilfe des Benetzungsablaufes beim Tauschkühlen von Stählen
,” Dissertation, Faculty for Mechanical Engineering,
Technical University of Munich
,
1991
, p. 160.
13.
Canale
,
L. C. F.
,
Kobasko
,
N. I.
, and
Totten
,
G. E.
, “
Intensive Quenching: Part 1—What Is It?
International Heat Treatment and Surface Engineering
, Vol.
1
,
2007
, pp.
30
33
.
14.
Kobasko
,
N. I.
,
Totten
,
G. E.
,
Webster
,
G. M.
, and
Bates
,
C. E.
, “
Comparison of Cooling Capacity of Poly(Alkylene Glycol) Quenchants with Water and Oil
,”
18th Heat Treating Society Conference Proceedings
,
H.
Walton
, and
R.
Wallis
, Eds.,
ASM International
,
Materials Park, OH
,
1998
, pp.
559
567
.
15.
Fernandes
,
P.
, and
Prabhu
,
K. N.
, “
Comparative Study of Heat Transfer and Wetting Behaviour of Conventional and Bioquenchants for Industrial Heat Treatment
,”
Int. J. Heat Mass Transfer
 0017-9310, Vol.
51
,
2008
, pp.
526
538
. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.018
16.
Beck
,
J. V.
, “
Surface Heat Flux Determination Using an Integral Method
,”
Nucl. Eng. Des.
 0029-5493, Vol.
7
,
1968
, pp.
170
178
. https://doi.org/10.1016/0029-5493(68)90058-7
17.
Penha
,
R. N.
,
Canale
,
L. C. F.
,
Totten
,
G. E.
, and
Sarmiento
,
G. S.
, “
Simulation of Heat Transfer Properties and Residual Stress Analyses of Cooling Curves Obtained from Quenching Studies
,”
J. ASTM Int.
 1546-962X,
2006
, Vol.
3
, Paper ID JAI13614.
18.
Hernandez-Morales
,
B.
,
Brimacombe
,
J. K.
, and
Hawbolt
,
E. B.
, “
Application of Inverse Techniques to Determine Heat-Transfer Coefficients in Heat-Treating Operations
,”
J. Mater. Eng. Perform.
 1059-9495, Vol.
1
,
1992
, pp.
763
771
. https://doi.org/10.1007/BF02658259
19.
Narazaki
,
M.
,
Totten
,
G. E.
, and
Webster
,
G. M.
, “
Hardening by Reheating and Quenching
,”
Handbook of Residual Stress and Deformation of Steel
,
G. E.
Totten
,
M.
Howes
, and
T.
Inoue
, Eds.,
ASM International
,
Materials Park, OH
,
2002
, pp.
248
295
.
20.
FormFem 1.6.—Program Pro Simulaci Tváření Rovinných a Rotačně Symetrických Těles Users Manual, ITA s.r.o., Ostrava, Czech Republic, December
2003
.
21.
Malhotra
,
C. P.
,
Pedanekar
,
N. R.
, and
Sahay
,
S.S.
, “
Cost Model for the Steel Reheating Operation
,”
Industrial Heating
, Vol.
69
, No.
3
,
2002
, pp.
67
70
.
22.
Bates
,
C. E.
,
Totten
,
G. E.
, and
Brennan
,
R. L.
, “
Quenching of Steel
,”
ASM Handbook—Heat Treating
, Vol.
4
,
ASM International
,
Materials Park, OH
,
1991
, pp.
67
120
.
23.
Issa
,
R. J.
Numerical Modelling of the Dynamics and Heat Transfer of Impacting Sprays for a Wide Range of Pressures
,” Ph.D. Thesis,
University of Pittsburgh
,
2003
.
24.
Wierzba
,
A.
, “
Deformation and Breakup of Liquid Drops in a Gas Stream at Nearly Critical Weber Numbers
,”
Exp. Fluids
 0723-4864, Vol.
9
,
1990
, pp.
59
64
. https://doi.org/10.1007/BF00575336
25.
Hachisa
,
H.
,
Taguchi
,
K.
,
Sasaki
,
T.
,
Matsumoto
,
T.
, and
Hidao
,
N.
Method and Apparatus for Quenching
,” U.S. Patent No. 4509995 (April 9,
1995
).
26.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
, “
Mist/Steam Cooling by a Row of Impinging Jets
,”
Int. J. Heat Mass Transfer
 0017-9310, Vol.
46
,
2003
, pp.
2279
2290
. https://doi.org/10.1016/S0017-9310(02)00521-5
27.
Haferkamp
,
H.
,
Bach
,
F-W.
,
Njemeyer
,
M.
, and
Breuer
,
M.
, “
Controlled Heat Treatment by Mist Quenching
,”
IECON ’98, Proceedings of the 24th Annual Conference of the IEEE
, Aachen, Germany, August 31–September 4,
1998
, Vol.
4
, pp.
2269
2274
.
28.
Bennon
,
W. D.
,
Jones
,
J. P.
,
Moulton
,
D. T.
, and
Walker
,
G. R.
, “
Process for Quenching Heat Treatable Metal Alloys
,” European Patent EP 0970260A1 (1 October
1998
).
29.
Bramfitt
,
B. L.
,
Cross
,
R. L.
, and
Wirick
,
D. P.
, “
Rail Head Hardening Facility at Pennsylvania Steel Technologies
,”
Iron & Steelmaker
, Vol.
22
,
1995
, pp.
17
21
.
30.
Zhan
,
X.
, and
Wang
,
S.
, “
Research on the Improvement of Rail Head Hardening Technology on Railway
,”
Proceedings of the Eastern Asia Society for Transportation Studies
,
2005
,
5
, pp.
263
271
.
31.
Ju
,
D. Y.
,
Yani
,
T.
,
Yokoda
,
H.
,
Suda
,
S.
, and
Hoshino
,
H.
Effect of Bubbling Boiling and Breaking of Steam Film on Heat Transfer Coefficient in Stirring Quenching Process
,”
Proceedings of the 4th International Conference on Quenching and the Control of Distortion
,
Chinese Heat Treatment Society
,
Beijing
,
2003
, p.
47
52
.
32.
Blackwood
,
R. R.
, and
Cheeseman
,
W. D.
, “
Metal Quenching Medium
,” U.S. Patent 3220893 (
1965
).
33.
Tensi
,
H. M.
,
Stich
,
A.
, and
Totten
,
G. E.
, “
Fundamentals of Quenching
,”
Metal Heat Treating
, March–April,
1995
, Vol.
2
, pp.
20
28
.
34.
Narazaki
,
M.
,
Totten
,
G. E.
, and
Webster
,
G. M.
, “
Hardening by Reheating and Quenching
,”
Handbook of Residual Stress and Deformation of Steel
,
G. E.
Totten
,
T.
Inoue
, and
M. A. H.
Howes
, Eds.,
ASM International
,
Materials Park, OH
,
2002
, pp.
248
295
.
35.
Kopietz
,
K. H.
, and
Munjat
,
F. S.
, “
Process for the Controlled Cooling of Ferrous Metal
,” U.S. Patent 4087290 (
1978
).
36.
Tokuue
,
T.
and
Takashi
,
K.
, “
Process for Quench Hardening with Polyacrylate Quenching Medium
,” U.S. Patent 3996076 (
1976
).
37.
Nakamura
,
E.
,
Uchida
,
H.
, and
Koyama
,
S.
Behaviour Analysis of Quenching Uniformity by JIS-Method Cooling Curve
,”
Proceedings of the 2nd International Conference on Quenching and Control of Distortion
,
G. E.
Totten
,
K.
Funatani
,
M. A. H.
Howes
, and
S.
Sjostrom
, Eds.,
ASM International
,
Materials Park, OH
,
1996
, pp.
111
115
.
38.
Lenard
,
J. G.
, “
A Study of Temperature Distribution in Rails During Intermittent Cooling
,”
J. Mater. Process. Technol.
 0924-0136, Vol.
25
,
1991
, pp.
303
320
. https://doi.org/10.1016/0924-0136(91)90115-U
39.
Stewart
,
I.
,
Massingham
,
J. D.
, and
Hagers
,
J. J.
, “
Heat Transfer Coefficient Effects on Spray Cooling
,”
Iron Steel Eng.
 0021-1559, Vol.
63
,
1996
, pp.
17
23
.
40.
Yonglin
,
M. A.
,
Gui
,
W.
, and
Baofeng
,
W.
, “
Numerical and Experimental Study of the Behavior of Rail Under Different Cooling Rates
,”
J. Mater. Process. Technol.
 0924-0136, Vol.
63
,
1997
, pp.
923
926
. https://doi.org/10.1016/S0924-0136(96)00015-5
41.
Filipovic
,
J.
,
Viskanta
,
R.
, and
Incropera
,
F. P.
, “
A Parametric Study of the Accelerated Cooling of Steel Strip
,”
Steel Res.
 0177-4832, Vol.
63
,
1992
, pp.
496
499
.
42.
DeArdo
,
A. J.
, “
Accelerated Cooling: A Physical Metallurgy Perspective
,”
Can. Metall. Q.
 0008-4433, Vol.
27
,
1988
, pp.
141
154
.
43.
Ackert
,
R. J.
,
Witty
,
R. W.
, and
Crozier
,
P. A.
, “
Method for the Production of Improved Railway Rails by Accelerated Cooling in Line with the Production Rolling Mill
,” U.S. Patent 4486248 (
1984
).
44.
de Boer
,
H.
,
Bienzeisler
,
H.
,
Müsgen
,
B.
,
Schmedders
,
H.
, and
Wick
,
K.
,
Stahl Eisen
 0340-4803, Vol.
112
,
1992
, pp.
101
107
.
45.
Clayton
,
P.
, and
Danks
,
D.
, “
Effect of Interlamellar Spacing on the Wear Resistance of Eutectoid Steels Under Rolling-Sliding Conditions
,”
Wear
 0043-1648, Vol.
135
,
1990
, pp.
369
389
. https://doi.org/10.1016/0043-1648(90)90037-B
46.
Hyzak
,
J. M.
, and
Bernstein
,
I. M.
, “
The Role of Microstructure on Strength and Toughness of Fully Pearlitic Steels
,”
Metall. Trans. A
 0360-2133 Vol.
7A
,
1976
, pp.
1217
1224
.
47.
Houin
,
P.
,
Simon
,
A.
, and
Beck
,
G.
, “
Relationship between Structure and Mechanical Properties of Pearlite between 0.2 % and 0.8 % C
,”
Trans. Iron Steel Inst. Jpn.
 0021-1583, Vol.
21
,
1981
, pp.
726
731
.
48.
Barsom
,
J. M.
, and
Imhof
,
E. J.
, Jr.
,
Fatigue and Fracture Behavior of Carbon-Steel Rails
,
D. H.
Stone
, and
G. G.
Knupp
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1978
, pp.
387
413
.
49.
Fowler
,
G. J.
, and
Tetelman
,
A. S.
,
The Effect of Grain Boundary Ferrite on Fatigue Crack Propagation in Pearlitic Rail Steels
,
D. H.
Stone
, and
G. G.
Knupp
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1978
, pp.
363
382
.
50.
Masumoto
,
H.
,
Sugino
,
K.
,
Nisida
,
S.
,
Kurihara
,
R.
, and
Matsuyamdm
,
S.
,
Some Features and Metallurgical Considerations of Surface Defects in Rail Due to Contact Fatigue
,
D. H.
Stone
, and
G. G.
Knupp
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1978
, pp.
233
255
.
51.
Löhe
,
D.
,
Lang
,
K.-H.
, and
Vöhringer
,
O.
, “
Residual Stresses and Fatigue Behavior
,”
Handbook of Residual Stress and Deformation of Steel
,
G. E.
Totten
,
M.
Howes
, and
T.
Inoue
, Eds.,
ASM International
,
Materials Park, OH
,
2002
, pp.
27
53
.
52.
Berns
,
H.
, “
Verzug von Stählen Infolge Wärmebehandlung
,”
Z. Werkstofftech.
 0049-8688, Vol.
8
,
1977
, pp. 149. https://doi.org/10.1002/mawe.19770080504
53.
Basu
,
J.
,
Srimani
,
S. L.
, and
Gupta
,
D. S.
, “
Rail Behaviour during Cooling after Hot Rolling
,”
J. Strain Anal. Eng. Des.
 0309-3247, Vol.
39
,
2004
, pp.
15
24
.
54.
Sommer
,
R. A.
,
Faber
,
M. R.
, and
Jennings
,
R. E.
, “
Method for Heat Treating Rail
,” U.S. Patent 4749419 (
1988
).
55.
Wang
,
Y.
,
Shen
,
X.
, and
Chiang
,
F. P.
, “
New Experimental Approach for Studying Residual Stresses in Rails
,”
Wear
 0043-1648, Vol.
191
,
1996
, pp.
90
94
. https://doi.org/10.1016/0043-1648(95)06699-3
This content is only available via PDF.
You do not currently have access to this content.