Abstract

The corrosion of metals occurs primarily by electrochemical processes involving metal oxidation and simultaneous reduction of some other species. The fundamental understanding of these processes has allowed the development of a number of electrochemical techniques for the study of the corrosion phenomena and assessment of the corrosion rate. In fact, electrochemical techniques are so ingrained in the field that many practitioners think of corrosion rates first in terms of current density rather than thickness or mass loss per unit time. Standard approaches for electrochemical corrosion rate determination are commonly used in the field for on-line monitoring of systems and facilities. Electrochemistry also provides powerful tools for developing fundamental understanding of corrosion phenomena. However, there are some limitations to the abilities of current electrochemical techniques and some needs for the future. This paper describes the status of electrochemical techniques, their limitations, where non-electrochemical methods are required, and future needs in the field.

References

1.
Frankel
,
G. S.
and
Rohwerder
,
M.
, “
Experimental Techniques for Corrosion
,” in
Corrosion and Oxide Films
, Encyclopedia of Electrochemistry, Vol.
4
,
M.
Stratmann
and
G. S.
Frankel
, Eds.,
Wiley-VCH
,
Weinheim, Germany
,
2003
.
2.
Mansfeld
,
F.
, “
The Polarization Resistance Technique for Measuring Corrosion Currents
,” in
Advances in Corrosion Science and Technology
,
M. G.
Fontana
and
R. W.
Staehle
, Eds.,
Plenum
,
New York
,
1976
.
3.
Scully
,
J. R.
, “
Electrochemical Methods for Laboratory Corrosion Testing
,” in
Corrosion Testing and Evaluation: Silver Anniversary Volume
,
R.
Baboian
and
S. W.
Dean
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1990
.
4.
Scully
,
J. R.
, “
Polarization Resistance Method for Determination of Instantaneous Corrosion Rates
,”
Corrosion (Houston)
 0010-9312, Vol.
56
,
2000
, pp.
199
218
.
5.
Kelly
,
R. G.
,
Scully
,
J. R.
,
Shoesmith
,
D. W.
, and
Buchheit
,
R. G.
,
Electrochemical Techniques in Corrosion Science and Engineering
,
Marcel Dekker
,
New York
,
2003
.
6.
Knotkova-Cermakova
,
D.
and
Barton
,
K.
, “
Corrosion Aggressivity of Atmospheres (Derivation and Classification)
,” in
Atmospheric Corrosion of Metals
, ASTM STP 767,
S. W.
Dean
 Jr.
and
E. C.
Rhea
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1982
.
7.
Leygraf
,
C.
and
Graedel
,
T. E.
,
Atmospheric Corrosion
,
Wiley-Interscience
,
New York
,
2000
.
8.
ASTM, Standard B117-97, “
Standard Practice for Operating Salt Spray (Fog) Testing Apparatus
,”
Annual Book of ASTM Standards
, Vol.
3.02
,
ASTM International
,
West Conshohocken, PA
,
2000
.
9.
Cyclic Cabinet Corrosion Testing
,
G. S.
Haynes
, Ed., ASTM STP 1238,
ASTM International
,
West Conshohocken, PA
,
1995
.
10.
Frankel
,
G. S.
and
Braithwaite
,
J. W.
, “
Corrosion in Microelectronic and Magnetic Data-Storage Devices
,” in
Corrosion Mechanisms in Theory and Practice
, 2nd Ed.,
P.
Marcus
, Ed.,
Marcel Dekker
,
New York
,
2002
.
11.
Thierry
,
D.
,
Thoren
,
A.
, and
Leygraf
,
C.
, “
Corrosion Monitoring Techniques Applied to Cooling Water and District Heating Systems
,” Paper 463, in
Corrosion/87
,
NACE
,
Houston, TX
,
1987
.
12.
Jones
,
D. A.
,
Principles and Prevention of Corrosion
, 2nd Ed.,
Simon and Schuster
,
Upper Saddle River, NJ
,
1996
.
13.
Frankel
,
G. S.
, “
Wagner-Traud to Stern-Geary; Development of Corrosion Kinetics
,” in
Corrosion Retrospective
,
G. S.
Frankel
,
H. S.
Isaacs
,
J. R.
Scully
, and
J. D.
Sinclair
, Eds.,
The Electrochemical Society
,
New York
,
2002
.
14.
Wagner
,
C.
and
Traud
,
W.
, “
On the Interpretation of Corrosion Processes Through the Superposition of Electrochemical Partial Processes and on the Potential of Mixed Electrodes
,”
Corrosion
, Vol.
62
,
2006
, pp.
844
855
.
15.
Electrochemical Techniques
,
R.
Baboian
, Ed.,
NACE
,
Houston
,
1986
.
16.
Corrosion Tests and Standards
,
R.
Baboian
, Ed.,
ASTM International
,
West Conshohocken, PA
,
1995
.
17.
Kendig
,
M.
and
Mansfeld
,
F.
, “
Corrosion Rates from Impedance Measurements: An Improved Approach for Rapid Automatic Analysis
,”
Corrosion (Houston)
 0010-9312, Vol.
39
,
1983
, pp.
466
467
.
18.
Lorenz
,
W. J.
and
Mansfeld
,
F.
, “
Determination of Corrosion Rates by Electrochemical DC and AC Methods
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(81)90015-9, Vol.
21
,
1981
, pp.
647
672
.
19.
Impedance Spectroscopy
,
J. R.
Macdonald
, Ed.,
John Wiley and Sons
,
New York
,
1987
.
20.
Tait
,
W. S.
,
An Introduction to Electrochemical Testing for Practicing Engineers and Scientists
,
PairODocs Publications
,
Racine, WI
,
1994
.
21.
Cottis
,
R. A.
,
Turgoose
,
S.
, and
Newman
,
R. C.
,
Corrosion Testing Made Easy: Impedance and Noise Analysis
,
B. C.
Syrett
, Ed.,
NACE
,
Houston, TX
,
1999
.
22.
Bertocci
,
U.
,
Frydman
,
J.
,
Gabrielli
,
C.
,
Huet
,
F.
, and
Keddam
,
M.
, “
Analysis of Electrochemical Noise by Power Spectral Density Applied to Corrosion Studies. Maximum Entropy Method or Fast Fourier Transform?
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1838714, Vol.
145
,
1998
, pp.
2780
2786
.
23.
Bertocci
,
U.
,
Gabrielli
,
C.
,
Huet
,
F.
, and
Keddam
,
M.
, “
Noise Resistance Applied to Corrosion Measurements. I. Theoretical Analysis
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1837361, Vol.
144
,
1997
, pp.
31
37
.
24.
Bertocci
,
U.
,
Gabrielli
,
C.
,
Huet
,
F.
,
Keddam
,
M.
, and
Rousseau
,
P.
, “
Noise Resistance Applied to Corrosion Measurements. II. Experimental Tests
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1837362, Vol.
177
,
1997
, pp.
37
43
.
25.
Bertocci
,
U.
and
Huet
,
F.
, “
Noise Resistance Applied to Corrosion Measurements. III. Influence of the Instrumental Noise on the Measurements
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1837896, Vol.
144
,
1997
, pp.
2786
2793
.
26.
Cottis
,
R. A.
, “
Interpretation of Electrochemical Noise Data
,”
Corrosion (Houston)
 0010-9312, Vol.
57
,
2001
, pp.
265
285
.
27.
Huet
,
F.
, “
Listening to Corrosion
,”
Interface (USA)
 , Vol.
10
,
2001
, pp.
40
43
.
28.
Mansfeld
,
F.
and
Xiao
,
H.
, “
Electrochemical Noise Analysis of Iron Exposed to NaCl Solutions of Different Corrosivity
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.2220796, Vol.
140
,
1993
, pp.
2205
2209
.
29.
Cottis
,
R. A.
, “
Sources of Electrochemical Noise in Corroding Systems
,”
Russ. J. Electrochem.
 1023-1935 https://doi.org/10.1134/S1023193506050077, Vol.
42
,
2006
, pp.
557
566
.
30.
Hagensen
,
A. R.
and
Edgemon
,
G. L.
, “
A Multifunction Corrosion Monitoring System for Nuclear Waste Storage
,” Paper 07364, in
Corrosion/2007
,
NACE
,
Houston, TX
,
2007
.
31.
Bosch
,
R. W.
,
Hubrecht
,
J.
,
Bogaerts
,
W. F.
, and
Syrett
,
B. C.
, “
Electrochemical Frequency Modulation: A New Electrochemical Technique for Online Corrosion Monitoring
,”
Corrosion (Houston)
 0010-9312, Vol.
57
,
2001
, pp.
60
70
.
32.
Kus
,
E.
and
Mansfeld
,
F.
, “
An Evaluation of the Electrochemical Frequency Modulation (EFM) Technique
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/j.corsci.2005.02.023, Vol.
48
,
2006
, pp.
965
979
.
33.
Bohni
,
H.
,
Suter
,
T.
, and
Schreyer
,
A.
, “
Micro- and Nanotechniques to Study Localized Corrosion
,”
Electrochim. Acta
 0013-4686 https://doi.org/10.1016/0013-4686(95)00072-M, Vol.
40
,
1995
, pp.
1361
1368
.
34.
Suter
,
T.
and
Alkire
,
R. C.
, “
Microelectrochemical Studies of Pit Initiation at Single Inclusions in Al 2024-T3
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1344530, Vol.
148
,
2001
, pp.
B36
B42
.
35.
Suter
,
T.
and
Bohni
,
H.
, “
Microelectrodes for Corrosion Studies in Microsystems
,”
Electrochim. Acta
 0013-4686 https://doi.org/10.1016/S0013-4686(01)00551-5, Vol.
47
,
2001
, pp.
191
199
.
36.
Suter
,
T.
,
Peter
,
T.
, and
Bohni
,
H.
, “
Microelectrochemical Investigations of MnS Inclusions
,”
Mater. Sci. Forum
 0255-5476,
1995
, pp.
25
40
.
37.
Landolt
,
D.
,
Corrosion and Surface Chemistry of Metals
,
EPFL Press
,
Lausanne
,
2007
.
38.
Kaesche
,
H.
, Metallic Corrosion, NACE, Houston TX, 1985.
39.
Fontana
,
M. G.
,
Corrosion: A Compilation
,
The Press of Hollenback
,
Columbus, OH
,
1957
.
40.
Kruger
,
J.
and
Calvert
,
J. P.
, “
Ellipsometric-Potentiostatic Studies of Iron Passivity
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.2426504, Vol.
114
,
1967
, pp.
43
49
.
41.
MacDougall
,
B.
and
Cohen
,
M.
, “
Anodic Oxide Films on Nickel in Acid Solutions
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.2132784, Vol.
123
,
1976
, pp.
191
197
.
42.
Sato
,
N.
and
Cohen
,
M.
, “
The Kinetics of Anodic Oxidation of Iron in Neutral Solution
,”
J. Electrochem. Soc.
 0013-4651, Vol.
111
,
1964
, pp.
512
519
.
43.
Burstein
,
G. T.
and
Marshall
,
P. I.
, “
Growth of Passivating Films on Scratched 304L Stainless Steel in Alkaline Solution
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(83)90111-7, Vol.
23
,
1983
, pp.
125
137
.
44.
Burstein
,
G. T.
and
Newman
,
R. C.
, “
Anodic Behaviour of Scratched Silver Electrodes in Alkaline Solution
,”
Electrochim. Acta
 0013-4686 https://doi.org/10.1016/0013-4686(80)87006-X, Vol.
25
,
1980
, pp.
1009
1013
.
45.
Burstein
,
G. T.
and
Davies
,
D. H.
, “
Analysis of Anodic Films Formed on Cobalt in Bicarbonate and Borate Electrolytes
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(80)90079-7, Vol.
20
,
1980
, pp.
989
995
.
46.
Bardwell
,
J. A.
,
MacDougall
,
B.
, and
Graham
,
M. J.
, “
Use of 18O/SIMS and Electrochemical Techniques to Study the Reduction and Breakdown of Passive Oxide Films on Iron
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.2095629, Vol.
135
,
1988
, pp.
413
418
.
47.
Burstein
,
G. T.
and
Davenport
,
A. J.
, “
The Current-Time Relationship During Anodic Oxide Film Growth Under High Electric Field
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.2096890, Vol.
136
,
1989
, pp.
936
941
.
48.
Kelly
,
R. G.
and
Newman
,
R. C.
, “
Confirmation of the Applicability of Scratched Electrode Techniques for the Determination of Bare Surface Current Densitites
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.2086427, Vol.
137
,
1990
, pp.
357
358
.
49.
Frankel
,
G. S.
,
Jahnes
,
C. V.
,
Brusic
,
V.
, and
Davenport
,
A. J.
, “
Repassivation Transients Measured with the Breaking-Electrode Technique on Aluminum Thin-Film Samples
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.2044289, Vol.
142
,
1995
, pp.
2290
2295
.
50.
Frankel
,
G. S.
, “
Pitting Corrosion of Metals: A Review of the Critical Factors
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1838615, Vol.
145
,
1998
, pp.
2186
2197
.
51.
Pessall
,
N.
and
Liu
,
C.
, “
Determination of Critical Pitting Potentials of Stainless Steel in Aquious Chloride Environments
,”
Electrochim. Acta
 0013-4686 https://doi.org/10.1016/0013-4686(71)85152-6, Vol.
16
,
1971
, pp.
1987
2003
.
52.
ASTM Standard F746-87, “
Standard Test Method for Pitting or Crevice Corrosion of Metallic Surgical Implant Materials
,”
Annual Book of ASTM Standards
, Vol.
13.01
,
ASTM International
,
West Conshohocken, PA
, 2000.
53.
Schmutz
,
P.
and
Frankel
,
G. S.
, “
Characterization of AA2024-T3 by Scanning Kelvin Probe Force Microscopy
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1838633, Vol.
145
,
1998
, pp.
2285
2294
.
54.
Schmutz
,
P.
and
Frankel
,
G. S.
, “
Corrosion Study of AA2024-T3 by Scanning Kelvin Probe Force Microscopy and In Situ AFM Scratching
,”
J. Electrochem. Soc.
 0013-4651, Vol.
145
,
1998
, pp.
2298
2306
.
55.
Frankel
,
G. S.
and
Leblanc
,
P.
, “
Studies of Corrosion Using Scanning Kelvin Probe Force Microscopy and AFM Scratching
,”
Corros. Sci. Technol.
 1598-6462, Vol.
31
,
2002
, pp.
419
425
.
56.
Iannuzzi
,
M.
and
Frankel
,
G. S.
, “
Inhibition of AA2024-T3 Corrosion by Vanadates: An AFM Scratching Investigation
,”
Corrosion (Houston)
 0010-9312, Vol.
63
,
2007
, pp.
672
688
.
57.
Schmutz
,
P.
and
Frankel
,
G. S.
, “
Influence of Dichromate Ions on Corrosion of Pure Aluminum and AA2024-T3 in NaCl Solution Studied by AFM Scratching
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1392659, Vol.
146
,
1999
, pp.
4461
4472
.
58.
Akashi
,
M.
,
Nakayama
,
G.
, and
Fukuda
,
T.
, in
Corrosion/98
,
NACE
,
Houston, TX
,
1998
, Paper 98158.
59.
Shibata
,
T.
, “
Development in the Concept of Repassivation Potential as a Measure of Crevice Corrosion Susceptibility
,” in
A Compilation of Special Topic Reports
,
F. M. G.
Wong
and
J. H.
Payer
, Eds.,
Dept. of Energy
,
Washington, DC
,
2002
, http://www.ocrwm.doe.gov/documents/peer_2/index.pdf.
60.
Evans
,
K. J.
,
Yilmaz
,
A.
,
Day
,
S. D.l.
,
Wong
,
L. L.
,
Estill
,
J. C.
, and
Rebak
,
R. B.
, “
Using Electrochemical Methods to Determine Alloy 22's Crevice Corrosion Repassivation Potential
,”
JOM
 1047-4838 https://doi.org/10.1007/s11837-005-0153-7, Vol.
57
,
2005
, pp.
56
61
.
61.
ASTM Standard G79-01, “
Standard Guide for Crevice Corrosion Testing of Iron-Base and Nickel-Base Stainless Alloys in Seawater and Other Chloride-Containing Aqueous Environments
,”
Annual Book of ASTM Standards
, Vol.
3.02
,
ASTM International
,
West Conshohocken, PA
,
2004
.
62.
Frankel
,
G. S.
,
Stockert
,
L.
,
Hunkeler
,
F.
, and
Boehni
,
H.
, “
Metastable Pitting of Stainless Steel
,”
Corrosion (Houston)
 0010-9312, Vol.
43
,
1987
, pp.
429
436
.
63.
Akiyama
,
E.
and
Frankel
,
G. S.
, “
The Influence of Dichromate Ions on Al Dissolution Kinetics in Artificial Crevice Electrode Cells
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1392597, Vol.
146
,
1999
, pp.
4095
4100
.
64.
Frankel
,
G. S.
, “
The Growth of 2–D Pits in Thin Film Aluminum
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(90)90199-F, Vol.
30
,
1990
, pp.
1203
1218
.
65.
Tester
,
J. W.
and
Isaacs
,
H. S.
, “
Diffusional Effects in Simulated Localized Corrosion
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.2134039, Vol.
122
,
1975
, pp.
1438
1445
.
66.
Gaudet
,
G. T.
,
Mo
,
W. T.
,
Hatton
,
T. A.
,
Tester
,
J. W.
,
Tilly
,
J.
,
Isaacs
,
H. S.
, and
Newman
,
R. C.
, “
Mass Transfer and Electrochemical Kinetic Interactions in Localized Pitting Corrosion
,”
AIChE J.
 0001-1541 https://doi.org/10.1002/aic.690320605, Vol.
32
,
1986
, pp.
949
958
.
67.
Isaacs
,
H. S.
and
Newman
,
R. C.
, “
Dissolution Kinetics During Localized Corrosion
,” in
Corrosion and Corrosion Protection
,
R. P.
Frankenthal
and
F.
Mansfeld
, Eds.,
ECS
,
Pennington, NJ
,
1981
.
68.
Newman
,
R. C.
, “
The Dissolution and Passivation Kinetics of Stainless Alloys Containing Molybdenum—I. Coulometric Studies of Fe-Cr and Fe-Cr-Mo Alloys
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(85)90111-8, Vol.
25
,
1985
, pp.
331
339
.
69.
Newman
,
R. C.
, “
The Dissolution and Passivation Kinetics of Stainless Alloys Containing Molybdenum—II. Dissolution Kinetics in Artificial Pits
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(85)90112-X, Vol.
25
,
1985
, pp.
341
350
.
70.
Zhang
,
W.
and
Frankel
,
G. S.
, “
Anisotropy of Localized Corrosion in AA2024-T3
,”
Electrochem. Solid-State Lett.
 1099-0062 https://doi.org/10.1149/1.1391121, Vol.
3
,
2000
, pp.
268
270
.
71.
Sehgal
,
A.
,
Frankel
,
G. S.
,
Zoofan
,
B.
, and
Rokhlin
,
S.
, “
Pit Growth Study in Al Alloys by the Foil Penetration Technique
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1393167, Vol.
147
,
2000
, pp.
140
148
.
72.
Hunkeler
,
F.
and
Bohni
,
H.
, “
Determination of Pit Growth Rates on Aluminum Using a Metal Foil Technique
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(94)00162-Y, Vol.
37
,
1981
, pp.
645
650
.
73.
Frankel
,
G. S.
,
Scully
,
J. R.
, and
Jahnes
,
C. V.
, “
Repassivation of Pits in Aluminum Thin Films
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1836912, Vol.
143
,
1996
, pp.
1834
1840
.
74.
Frankel
,
G. S.
,
Dukovic
,
J. O.
,
Rush
,
B. M.
,
Brusic
,
V.
, and
Jahnes
,
C. V.
, “
Pit Growth in NiFe Thin Films
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.2221202, Vol.
139
,
1992
, pp.
2196
2201
.
75.
Sehgal
,
A.
,
Lu
,
D.
, and
Frankel
,
G. S.
, “
Pitting in Aluminum Thin Films: Supersaturation and Effects of Dichromate Ions
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1838722, Vol.
145
,
1998
, pp.
2834
2840
.
76.
Shih
,
H.
and
Mansfeld
,
F.
, “
A Fitting Procedure for Impedance Sectra Obtained for Cases of Localized Corrosion
,”
Corrosion (Houston)
 0010-9312, Vol.
45
,
1989
, pp.
610
614
.
77.
Brusic
,
V.
,
Russak
,
M.
,
Schad
,
R.
,
Frankel
,
G.
,
Selius
,
A.
, and
DiMilia
,
D.
, “
Corrosion of Thin Film Magnetic Disk: Galvanic Effects of the Carbon Overcoat
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.2096611, Vol.
136
,
1989
, pp.
42
46
.
78.
Mansfeld
,
F.
and
Kenkel
,
J. V.
, “
Electrochemical Monitoring of Atmospheric Corrosion Phenomena
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(76)90052-4, Vol.
16
,
1976
, pp.
111
122
.
79.
Mansfeld
,
F.
, “
Monitoring of Atmospheric Corrosion Phenomena with Electrochemical Sensors
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.2095983, Vol.
135
,
1988
, pp.
1354
1358
.
80.
Cox
,
A.
and
Lyon
,
S. B.
, “
Electrochemical Study of the Atmospheric Corrosion of Mild Steel-I. Experimental Method
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(94)90141-4, Vol.
36
,
1994
, pp.
1167
1176
.
81.
Cox
,
A.
and
Lyon
,
S. B.
, “
Electrochemical Study of the Atmospheric Corrosion of Mild Steel-III. The Effect of Sulphur Dioxide
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(94)90143-0, Vol.
36
,
1994
, pp.
1193
1199
.
82.
Cox
,
A.
and
Lyon
,
S. B.
, “
Electrochemical Study of the Atmospheric Corrosion of Iron-II. Cathodic and Anodic Processes on Uncorroded and Pre-Corroded
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(94)90142-2, Vol.
36
,
1994
, pp.
1177
1192
.
83.
Zhang
,
S. H.
and
Lyon
,
S. B.
, “
Anodic Processes on Iron Covered by Thin, Dilute Electrolyte Layers (I)—Anodic Polarization
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(94)90182-1, Vol.
36
,
1994
, pp.
1289
1307
.
84.
Zhang
,
S. H.
and
Lyon
,
S. B.
, “
Anodic Processes on Iron Covered by Thin, Dilute Electrolyte Layers (II)—a.c. Impedance Measurements
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(94)90183-X, Vol.
36
,
1994
, pp.
1309
1321
.
85.
Stratmann
,
M.
and
Streckel
,
H.
, “
On the Atmospheric Corrosion of Metals, Which are Covered with Thin Electrolyte Layers Part 1: Verification of the Experimental Technique
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(90)90032-Z, Vol.
30
,
1990
, pp.
681
696
.
86.
Stratmann
,
M.
and
Streckel
,
H.
, “
On the Atmospheric Corrosion of Metals, Which are Covered with Thin Electrolyte Layers Part 2: Experimental Results
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(90)90033-2, Vol.
30
,
1990
, pp.
697
714
.
87.
Stratmann
,
M.
,
Streckel
,
H.
,
Kim
,
K. T.
, and
Crockett
,
S.
, “
On the Atmospheric Corrosion of Metals, Which are Covered with Thin Electrolyte Layers Part 3: The Measurement of Polarization Curves on Metal Surfaces Which are Covered by Thin Electrolyte Layers
,”
Corros. Sci.
 0010-938X, Vol.
90
,
1990
, pp.
715
734
.
88.
Frankel
,
G. S.
,
Stratmann
,
M.
,
Rohwerder
,
M.
,
Michalik
,
A.
,
Maier
,
B.
,
Dora
,
J.
, and
Wicinski
,
M.
, “
Potential Control Under Thin Aqueous Layers Using a Kelvin Probe
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/j.corsci.2006.10.017, Vol.
49
,
2007
, pp.
2021
2036
.
89.
Nishikata
,
A.
,
Ishihara
,
Y.
,
Hayashi
,
Y.
, and
Tsuru
,
T.
, “
Influence of Electrolyte Layer Thickness and pH on the Initial Stage of the Atmosphere Corrosion of Iron
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1837578, Vol.
144
,
1997
, pp.
1244
1252
.
90.
Nishikata
,
A.
,
Ishihara
,
Y.
, and
Tsuru
,
T.
, “
An Application of Electrochemical Impedance Spectroscopy to Atmospheric Corrosion Study
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(95)00002-2, Vol.
37
,
1995
, pp.
897
911
.
91.
Nishikata
,
A.
,
Yamashita
,
Y.
,
Katayama
,
H.
,
Tsuru
,
T.
,
Usami
,
A.
,
Tanabe
,
K.
, and
Mabuchi
,
H.
, “
An Electrochemical Impedance Study on Atmospheric Corrosion of Steels in a Cyclic Wet-Dry Condition
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(95)00104-R, Vol.
37
,
1995
, pp.
2059
2069
.
92.
Vera Cruz
,
R. P.
,
Nishikata
,
A.
, and
Tsuru
,
T.
, “
AC Impedance Monitoring of Pitting Corrosion of Stainless Steel Under a Wet-Dry Cyclic Condition in Chloride-Containing Environment
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/0010-938X(96)00028-5, Vol.
38
,
1996
, pp.
1397
1406
.
93.
Vera Cruz
,
R. P.
,
Nishikata
,
A.
, and
Tsuru
,
T.
, “
Pitting Corrosion Mechanism of Stainless Steels Under Wet-Dry Exposure in Chloride-Containing Environments
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/S0010-938X(97)00124-8, Vol.
40
,
1998
, pp.
125
139
.
94.
Tsutsumi
,
Y.
,
Nishikata
,
A.
, and
Tsuru
,
T.
, “
Anodic Behavior of Iron in Acid Solutions
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1992470, Vol.
152
,
2005
, pp.
B358
B363
.
95.
ASTM, Standard G34-01, “
Standard Test Method for Exfoliation Corrosion Susceptibility in 2xxx and 7xxx Series Aluminum Alloys(EXCO Test)
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2004
.
96.
Lee
,
S.
and
Lifka
,
B. W.
, “
Modification of the EXCO Test Method for Exfoliation Corrosion Susceptibility in 7XXX, 2XXX and Aluminum-Lithium Alloys
,” in
New Methods for Corrosion Testing of Aluminum Alloys
, ASTM STP 1134,
V. S.
Agarwala
and
G. M.
Ugiansky
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1992
.
97.
Evans
,
D. G.
and
Jeffrey
,
P. W.
, “
Exfoliation Corrosion of AlZnMg Alloys
,”
U.R. Evans Conference on Localized Corrosion
,
NACE-3
,
Houston, TX
,
1974
.
98.
Haynes
,
G. S.
and
Baboian
,
R.
, “
Modified Salt Spray (Fog) Testing, Laboratory Corrosion Tests and Standards
,” in
ASTM Standard G85-85 A2
, STP 866,
ASTM International
,
West Conshohocken, PA
,
1985
.
99.
Lifka
,
B. W.
and
Sprowls
,
D. O.
, “
An Improved Exfoliation Test for Aluminum Alloys
,”
Corrosion (Houston)
 0010-9312, Vol.
22
,
1966
, pp.
7
15
.
100.
Sprowls
,
D. O.
,
Walsh
,
J. D.
, and
Shumaker
,
M. B.
, “
Simplified Exfoliation Testing of Aluminum Alloys
,” in
Localized Corrosion-Cause of Metal Failure
, ASTM STP 516,
ASTM International
,
West Conshohocken, PA
,
1972
.
101.
Braun
,
R.
, “
Exfoliation Corrosion Testing of Aluminum Alloys
,”
Br. Corros. J., London
 0007-0599, Vol.
30
,
1995
, pp.
203
208
.
102.
Lifka
,
B. W.
and
Sprowls
,
D. O.
, “
Relationship of Accelerated Test Methods for Exfoliation Resistance in 7xxx Series Aluminum Alloys with Exposure to a Seacoast Atmosphere
,” in
ASTM Special Technical Publication 558
,
ASTM International
,
West Conshohocken, PA
,
1973
.
103.
Sprowls
,
D. O.
,
Summerson
,
T. J.
, and
Loftin
,
F. E.
, “
Exfoliation Corrosion Testing of 7075 and 7178 Aluminum Alloys-Interim Report on Atmospheric Exposure Tests
,”
ASTM International
,
West Conshohocken, PA
,
1973
.
104.
Liddiard
,
E. A. G.
,
Whittaker
,
J. A.
, and
Farmery
,
H. K.
, “
The Exfoliation Corrosion of Aluminum Alloys
,”
J. Inst. Met.
 0020-2975, Vol.
89
, 1960-1961, pp.
377
384
.
105.
Zhao
,
X.
and
Frankel
,
G. S.
, “
Effects of RH, Temper and Stress on Exfoliation Corrosion Kinetics of AA7178
,”
Corrosion (Houston)
 0010-9312, Vol.
62
,
2006
, pp.
256
266
.
106.
Zhao
,
X.
and
Frankel
,
G. S.
, “
Quantitative Study of Exfoliation Corrosion: Exfoliation of Slices in Humidity Technique
,”
Corros. Sci.
 0010-938X https://doi.org/10.1016/j.corsci.2006.05.037, Vol.
49
,
2007
, pp.
920
938
.
107.
Knipping
,
E. M.
,
Lakin
,
M. J.
,
Foster
,
K. L.
,
Jungwirth
,
P.
,
Tobias
,
D. J.
,
Gerber
,
R. B.
,
Dabdub
,
D.
, and
Finlayson-Pitts
,
B. J.
, “
Experiments and Simulations of Ion-Enhanced Interfacial Chemistry on Aqueous NaCl Aerosols
,”
Science
 0036-8075 https://doi.org/10.1126/science.288.5464.301, Vol.
288
,
2000
, pp.
301
306
.
108.
Pistorius
,
P. C.
, in
14th International Corrosion Council
,
published on CD-ROM
Capetown, S.A.
,
1999
.
109.
Kang
,
J.
and
Frankel
,
G. S.
, “
Potentiostatic Pulse Testing for Assessment of Early Coating Failure
,”
Z. Phys. Chem.
 0942-9352 https://doi.org/10.1524/zpch.2005.219.11.1519, Vol.
219
,
2005
, pp.
1519
1538
.
110.
Rohwerder
,
M.
,
Leblanc
,
P.
,
Frankel
,
G. S.
, and
Stratmann
,
M.
, “
Application of Scanning Kelvin Probe in Corrosion Science
,” in
Analytical Methods in Corrosion Science and Engineering
,
P.
Marcus
and
F.
Mansfeld
, Eds.,
CRC Press
,
Boca Raton, FL
,
2006
.
111.
Stratmann
,
M.
, “
2005 W. R. Whitney Award Lecture: Corrosion Stability of Polymer-Coated Metals—New Concepts Based on Fundamental Understanding
,”
Corrosion (Houston)
 0010-9312, Vol.
661
,
2005
, pp.
1115
1126
.
112.
Zhao
,
J.
,
Frankel
,
G. S.
, and
McCreery
,
R. L.
, “
Corrosion Protection of Untreated AA2024-T3 in Chloride Solution by Chromate Conversion Coating Monitored with Raman Spectroscopy
,”
J. Electrochem. Soc.
 0013-4651 https://doi.org/10.1149/1.1838630, Vol.
145
,
1998
, pp.
2258
2264
.
113.
Buchheit
,
R. G.
,
Mamidipally
,
S. B.
,
Schmutz
,
P.
, and
Guan
,
H.
, “
Active Corrosion Protection in Ce-Modified Hydrotalcite Conversion Coatings
,”
Corrosion (Houston)
 0010-9312, Vol.
58
,
2002
, pp.
3
14
.
114.
Buchheit
,
R. G.
,
Cunningham
,
M.
,
Jensen
,
H.
,
Kendig
,
M. W.
, and
Martinez
,
M. A.
, “
A Correlation Between Salt Spray and Electrochemical Impedance Spectroscopy Test Results for Conversion-Coated Aluminum Alloys
,”
Corrosion (Houston)
 0010-9312, Vol.
51
,
1998
, pp.
61
72
.
This content is only available via PDF.
You do not currently have access to this content.