Abstract

Simulation of the crack growth for complex geometries is presented in this paper. Determination of the crack propagation direction under mixed mode conditions is one of the most important parameters in fracture mechanics. There are several criteria that have been developed to predict crack growth and its direction using linear elastic fracture mechanics (LEFM), many of which have recently been incorporated into finite element codes. These criteria are commonly adopted in the prediction of crack propagation in simple geometries and in straight crack paths. In more complex geometries, a more accurate determination of the crack propagation path, using remeshing methods can be employed. However, the remeshing technique usually suffers from the loss of strain energy density that can occur at the tip of the crack during the interpolation of field solutions. In this research work, the crack growth simulation is presented which allows for crack path deviation without the use of remeshing of the model. This method deals with a nonstraight crack growth path, is based on a node releasing technique and appropriate fracture criteria. The maximum principal stress and maximum strain energy release rate criteria is used in this paper exclusively. The results of simulation have been compared with experimental results as well as with numerical works of others that have been found in the recently published literature.

References

1.
Bittencourt
,
T. N.
, “
Computer Simulation of Linear and Nonlinear Crack Propagation in Cementitious Materials
,” Phd Thesis,
Cornell University
,
1993
.
2.
Tabiei
,
A.
and
Jin
Wu
, “
Development of the DYNA3D Simulation Code With Automated Fracture Procedure for Brick Elements
,”
Int. J. Numer. Methods Eng.
 0029-5981 https://doi.org/10.1002/nme.664, Vol.
57
,
2003
, pp.
1
28
.
3.
Bittencourt
,
T. N.
and
Wawrzynek
,
P. A.
, “
Quasi-Automatic Simulation of Crack Propagation for 2D LEFM Problems
,”
Eng. Fract. Mech.
 0013-7944, Vol.
55
, No.
2
,
1996
, pp.
321
334
.
4.
Bouchard
,
P. O.
,
Bay
,
F.
, and
Chastel
,
Y.
, “
Numerical Modeling of Crack Propagation: Automatic Remeshing and Comparison of Different Criteria
,”
Comput. Methods Appl. Mech. Eng.
 0045-7825, Vol.
192
,
2003
, pp.
3887
3908
.
5.
Beissel
,
S.
,
Johnson
,
G.
, and
Popelar
,
C
, “
An Element Failure Algorithm for Dynamic Crack Propagation in General Directions
,”
Eng. Fract. Mech.
 0013-7944, Vol.
61
,
1998
, pp.
407
426
.
6.
Biglari
,
F R.
,
Tavakoli
,
A.
,
Parsa
,
M. H.
,
Nikbin
,
K.
, and
O'Dowd
,
N. P.
, “
Comparison of Fine and Conventional Blanking Based on Ductile Fracture Criteria
,”
7th Biennial ASME Conference on Engineering Systems Design and Analysis
, July 19–22,
Manchester
,
UK
,
2004
.
7.
Belytschko
,
T.
,
Lu
,
Y. Y.
, and
Gu
,
L.
, “
Element Free Galerkin Methods
,”
Int. J. Numer Methods Eng.
 0029-5981 https://doi.org/10.1002/nme.1620370205, Vol.
37
,
1994
, pp.
229
256
.
8.
Rashid
,
M. M.
, “
The Arbitrary Local Mesh Replacement Method: An Alternative to Remeshing for Crack Propagation Analysis
,”
Comput. Methods Appl. Mech. Eng.
 0045-7825, Vol.
154
,
1998
, pp.
133
150
.
9.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer Methods Eng.
 0029-5981 https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J, Vol.
46
,
1999
, pp.
131
150
.
10.
Sukumar
,
N.
, and
Prevost
,
J. H.
, “
Modeling Quasi-Static Crack Growth With the Extended Finite Element Method. Part I: Computer Implementation
,”
Int. J. Solids Struct
 0020-7683, Vol.
40
,
2003
, pp.
7513
7537
.
11.
Wells
,
A. A.
, “
Unstable Crack Propagation in Metals: Cleavage and Fast Fracture
,”
Proceedings of the Crack Propagation Symposium
, Vol.
1
Paper 84,
Cranfield
U.K.
,
1961
.
12.
Anderson
,
T. L.
,
Fracture Mechanics Fundamentals and Applications
, 2nd Ed.,
Texas A&M University
,
College Station, Texas
,
1995
.
13.
Fortino
,
S.
and
Bilotta
,
A.
, “
Evaluation of the Amount of Crack Growth in 2D LEFM Problems
,”
Eng. Fract. Mech.
 0013-7944, Vol.
71
,
2004
, pp.
1403
1419
.
14.
Gerken
,
J. M.
, “
An Implicit Finite Element Method for Discrete Dynamic Fracture
,” MS thesis,
Colorado State University
,
1998
.
15.
Smith
,
F. W.
, “
Software Tools for Dynamic Cracking Analysis
,” Final Report,
2000
.
16.
Erdogan
,
F.
and
Sih
,
G. C
, “
On the Crack Extension in Plane Loading and Transverse Shear
,”
J. Basic Eng.
 0021-9223, Vol.
85
,
1963
, pp.
519
527
.
17.
Maiti
,
S. K.
and
Smith
,
R. A.
, “
Comparison of the Criteria for Mixed Mode Brittle Fracture Based on the Preinstability Stress-Strain Field. Part II: Pure Shear and Uniaxial Compressive Loading
,”
Int. J. Fract.
 0376-9429, Vol.
24
,
1984
, pp.
5
22
.
18.
Hussain
,
M. A.
,
Pu
,
S. L.
, and
Underwood
,
J. H.
, “
Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II
,”
Fract. Analysis
, ASTM STP 560,
ASTM
,
Philadelphia, PA
,
1974
, pp.
2
28
.
19.
Gurson
,
A. L.
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I. Yield Criteria and Flow Rules for Porous Ductile Media
,”
J. Eng. Mater Technol
 0094-4289, Vol.
99
,
1997
, pp.
2
15
.
20.
Biglari
,
F. R.
,
Nikbin
,
K. M.
, and
O'Dowd
,
N. P.
, “
Numerical Simulation of Crack Growth Based on Void Volume Fraction
,”
Proceedings of ISME2002 Conference
,
Tehran
,
Iran
, May, 2002.
21.
Bouchard
,
P. O.
,
Bay
,
F.
,
Chastel
,
Y.
, and
Tovena
,
I.
, “
Crack Propagation Modeling Using an Advanced Remeshing Technique
,”
Comput. Methods Appl. Mech. Eng.
 0045-7825, Vol.
189
,
2000
, pp.
723
742
.
22.
Miranda
,
A. C. O.
,
Miggiolaro
,
M. A.
,
Castro
,
J. T. P.
,
Martha
,
L. F.
, and
Bittencourt
,
T. N.
, “
Fatigue Life and Crack Path Predictions in Generic 2D Structural Components
,”
Eng. Fract. Mech.
 0013-7944, Vol.
70
,
2003
, pp.
1259
1279
.
23.
Sih
,
G. C.
and
Macdonald
,
B.
, “
Fracture Mechanics Applied to Engineering Problems-Strain Energy Density Fracture Criterion
,”
Eng. Fract. Mech.
 0013-7944 https://doi.org/10.1016/0013-7944(74)90033-2, Vol.
6
,
1974
, pp.
361
386
.
24.
Rice
,
J. R.
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentrations by Notches and Cracks
,”
J. Appl. Phys.
 0021-8979 https://doi.org/10.1063/1.1713322, Vol.
35
,
1968
, pp.
379
386
.
25.
de Lorenzi
,
H. G.
, “
Energy Release Rate Calculations by the Finite Element Method
,”
Eng. Fract Mech.
 0013-7944 https://doi.org/10.1016/0013-7944(85)90060-8, Vol.
21
, No.
1
,
1985
, pp.
129
143
.
26.
Owen
,
D. R. J.
and
Fawkes
,
A. J.
,
Engineering Fracture Mechanics: Numerical Methods and Applications
,
Pineridge Press Ltd
,
1983
.
27.
Nuismer
,
R. J.
, “
An Energy Release Rate Criterion for Mixed Mode Fracture
,”
Int. J. Fract.
 0376-9429 https://doi.org/10.1007/BF00038891, Vol.
11
, No.
2
,
1975
, pp.
245
250
.
28.
Nishioka
,
T.
,
Tokudome
,
H.
, and
Kinoshita
,
M.
, “
Dynamic Fracture-Path Prediction in Impact Fracture Phenomena Using Moving Finite Element Method Based on Delaunay Automatic Mesh Generation
,”
Int. J. Solids Struct
 0020-7683, Vol.
38
,
2001
, pp.
5273
5301
.
This content is only available via PDF.
You do not currently have access to this content.