Abstract

The electrical conductivity of polymers can be increased by the addition of conductive fillers, including forms of carbon fibers and carbon black. The resulting composites can be used in applications where metals have typically been the materials of choice. The advantages of using these materials include lighter weight, resistance to corrosion, and the ability to be readily adapted to the needs of a specific application. One of the most significant applications for conductive polymer composites are conductive carbon-polymer composite electrodes. As many properties such as conductivity, mechanical integrity, low permeability, electrochemical activity, and stability in the electrolytes are required of materials to be used as electrodes, so “material selection” plays a crucial role in fabricating these materials. In this work it was found that high density polyethylene (HDPE)/ethylene-propylene-diene monomer(EPDM) blend ratio (70/30) has lower percolation threshold and volume resistivity than individually carbon black filled HDPE and EPDM due to “double percolation” effect. Carbon fibers were also added to the polymer-carbon black mixtures to enhance the conductivity and mechanical properties. The electrical conductivity of composites with different ratios of carbon black (CB) content to carbon fiber (CF) content was studied. The CB content is the main factor to determine the resistivity of the composites filled with CB and CF. Mechanical properties, including tensile strength, elongation at break, and impact strength of the conductive composites were evaluated. The results showed that incorporation of CB and CF in the composites will enhance tensile strength, but decrease elongation at break and impact strength of the composites. In mechanical properties, CF content has a greater effect than CB content. From the comparison of the resistivity and mechanical properties of the composites filled with CB and CF with that of the composites filled with CB only, it is concluded that using CF as a substitute for part of the CB in CB-filled composites can enhance electrical and mechanical properties.

References

1.
Bueche
,
F.
,
J. Appl. Phys.
 0021-8979 https://doi.org/10.1063/1.1661034, Vol.
43
, No.
11
,
1972
, pp. 4837.
2.
Bueche
,
F.
,
J. Appl. Phys.
 0021-8979 https://doi.org/10.1063/1.1661934, Vol.
44
, No.
1
,
1973
, pp. 532.
3.
Cotton
,
G. R.
,
Plast. Rubber Process. Applic.
 0959-8111, Vol.
7
, No.
3
,
1987
, pp. 173.
4.
Clingerman
,
M.
,
Lee
,
Weber
,
E. H.
,
King
,
J. A.
, and
Schulz
,
K. H.
,
J. Appl. Polym. Sci.
 0021-8995 https://doi.org/10.1002/app.11938, Vol.
88
,
2003
, pp.
2280
2299
.
5.
Gokturk
,
H. S.
,
Fiske
,
T. J.
, and
Kalon
,
D. M.
,
J. Appl. Polym. Sci.
 0021-8995 https://doi.org/10.1002/app.1993.070501105, Vol.
50
,
1993
, pp. 1891.
6.
Yi
,
J. Y.
and
Choi
,
G. M.
,
J. Electroceram.
 1385-3449, Vol.
33
,
1999
, pp. 361.
7.
Narkis
,
M.
,
Ram
,
A.
, and
Flasher
,
F.
,
Polym. Eng. Sci.
 0032-3888 https://doi.org/10.1002/pen.760180808, Vol.
18
,
1978
, pp. 649.
8.
Fujikura
,
Y.
,
Kawarai
,
M.
, and
Ozaki
,
F.
,
Polym. J.
, Vol.
21
,
1979
, pp. 609.
9.
Gubbles
,
F.
,
Jerome
,
R.
, and
Teyssie
,
R.
,
Macromolecules
 0024-9297 https://doi.org/10.1021/ma991347t, Vol.
33
,
2000
, pp. 5221.
10.
Gubbles
,
F.
,
Jerome
,
R.
,
Vanlathem
,
E.
,
Deltour
,
R.
,
Blacher
,
S.
, and
Brouers
,
F.
,
Chem. Mater.
 0897-4756 https://doi.org/10.1021/cm970594d, Vol.
10
,
1998
, pp. 1227.
11.
Tang
,
H.
,
Chen
,
X. F.
, and
Luo
,
Y. X.
,
Eur. Polym. J.
 0014-3057 https://doi.org/10.1016/0014-3057(96)00026-2, Vol.
32
,
1996
, pp. 963.
12.
Cheah
,
K.
,
Forsyth
,
M.
, and
Simon
,
G. P.
,
J. Polym. Sci., Part B: Polym. Phys.
 0887-6266 https://doi.org/10.1002/1099-0488(20001201)38:23<3106::AID-POLB120>3.0.CO;2-2, Vol.
38
,
2000
, pp. 3106.
13.
Asai
,
S.
,
Hayakawa
,
Y.
,
Suzuki
,
K.
, and
Sumita
,
M.
,
Kobunshi Rombunshu
 0386-2186, Vol.
48
,
1991
, pp. 635.
14.
Zhang
,
C.
,
Han
,
H. F.
,
Yi
,
X. S.
,
Asai
,
S.
, and
Sumita
,
M.
,
Compos. Interfaces
 0927-6440, Vol.
6
,
1999
, pp. 227.
15.
Lu
,
G.
,
Li
,
X.
,
Jiang
,
H.
, and
Mao
,
X.
,
J. Appl. Polym. Sci.
 0021-8995 https://doi.org/10.1002/(SICI)1097-4628(19961226)62:13<2193::AID-APP2>3.0.CO;2-E, Vol.
62
,
1996
, pp.
2193
2199
.
16.
Thongruang
,
W.
,
Spontak
,
R. J.
, and
Balik
,
C. M
,
Polymer
 0032-3861, Vol.
43
,
2002
, pp.
2279
2286
.
17.
Miyauchi
,
S.
and
Togashi
,
E.
,
J. Appl. Polym. Sci.
 0021-8995 https://doi.org/10.1002/app.1985.070300703, Vol.
30
,
1985
, pp.
2743
2751
.
18.
Poiiey
,
M. H.
,
Boonstra
,
B. B. T.
,
Rubb. Chem. Technol.
 0035-9475, Vol.
30
,
1957
, pp.
170
180
.
19.
Chan
,
C. M
,
Cheng
,
C. L.
, and
Yuen
,
M. M. F.
,
Polym. Eng. Sci.
 0032-3888 https://doi.org/10.1002/pen.11757, Vol.
37
,
1997
, pp. 1127.
20.
Sumita
,
M.
,
Sakata
,
K.
,
Asai
,
S.
,
Miyasaka
,
K.
, and
Nakagawa
,
H.
,
Polym. Bull.
 0096-834X https://doi.org/10.1007/BF00310802, Vol.
25
,
1991
, pp. 265.
21.
Zhang
,
C.
,
Yi
,
X. S.
,
Yui
,
H.
,
Asai
,
S.
, and
Sumita
,
M.
,
Compos. Interfaces
 0927-6440, Vol.
6
,
1999
, pp. 287.
22.
Zhang
,
C.
,
Yi
,
X. S.
,
Yui
,
H.
,
Asai
,
S.
, and
Sumita
,
M.
,
Mater Lett.
 0167-577X https://doi.org/10.1016/S0167-577X(98)00023-8, Vol.
36
,
1998
, pp. 186.
This content is only available via PDF.
You do not currently have access to this content.