Skip Nav Destination
Issues
September 2020
This article was originally published in
Journal of Heat Transfer
ISSN 0022-1481
EISSN 1528-8943
Review Articles
Heat and Mass Transfer in the Food, Energy, and Water Nexus—A Review
Melanie M. Derby, Allison N. Adams, Partha P. Chakraborty, Mohammad Rejaul Haque, Ryan A. Huber, Jordan A. Morrow, Gennifer A. Riley, Molly Ross, Emily M. Stallbaumer, Amy R. Betz, Hitesh Bindra
J. Heat Transfer. September 2020, 142(9): 090801.
doi: https://doi.org/10.1115/1.4047089
Topics:
Cooling
,
Food products
,
Heat
,
Mass transfer
,
Water
Research Papers
Combustion and Reactive Flows
The Thermal Load and Ablation Mechanism of Piston Subjected to Detonation
J. Heat Transfer. September 2020, 142(9): 091301.
doi: https://doi.org/10.1115/1.4047507
Topics:
Ablation (Vaporization technology)
,
Explosions
,
Heat
,
Pistons
,
Stress
,
Temperature
,
Pressure
,
Computer simulation
Evaporation, Boiling, and Condensation
A Method for Measuring Contact Angle and the Influence of Surface-Fluid Parameters on the Boiling Heat Transfer Performance
J. Heat Transfer. September 2020, 142(9): 091601.
doi: https://doi.org/10.1115/1.4047057
Topics:
Boiling
,
Fluids
,
Heat transfer
,
Heating
,
Nanofluids
,
Nanoparticles
,
Pool boiling
,
Surface roughness
,
Water
Heat and Mass Transfer
Reflection of Thermoelastic Waves From the Insulated Surface of a Solid Half-Space With Time-Delay
J. Heat Transfer. September 2020, 142(9): 092101.
doi: https://doi.org/10.1115/1.4046924
Topics:
Thermoelasticity
,
Waves
,
Reflection
,
Reflectance
,
Delays
,
Quadratic programming
A Mathematical Model on Heat Mass Transfer Including Relaxation Time for Different Geometries During Drying of Foods
J. Heat Transfer. September 2020, 142(9): 092102.
doi: https://doi.org/10.1115/1.4047147
Topics:
Boundary-value problems
,
Drying
,
Food products
,
Heat
,
Mass transfer
,
Relaxation (Physics)
,
Slabs
,
Shapes
Numerical Analysis of Magnetic Field and Heat Transfer of a Reciprocating Magnetocaloric Regenerator Using a Halbach Magnet Array
Tunahan Akış, Abdullatif Hamad, Mehmet Akif Ezan, Erim Yanık, Ahmet Yılancı, Serdar Çelik, Orhan Ekren
J. Heat Transfer. September 2020, 142(9): 092103.
doi: https://doi.org/10.1115/1.4047368
Topics:
Cycles
,
Fluids
,
Heat transfer
,
Magnetic fields
,
Magnets
,
Pressure
,
Temperature
,
Magnetocaloric effect
,
Numerical analysis
,
Flow (Dynamics)
Jets, Wakes, and Impingement Cooling
Visualization of Quench Front Propagation on Heated Rod Through Single Jet Impingement
J. Heat Transfer. September 2020, 142(9): 092301.
doi: https://doi.org/10.1115/1.4047149
Topics:
Nanofluids
,
Nanoparticles
,
Quenching (Metalworking)
,
Temperature
,
Visualization
,
Water
,
Fluids
,
Shapes
,
Heat flux
,
Sputtering (Irradiation)
Inverse Estimation of Heat Transfer Coefficient and Reference Temperature in Jet Impingement
J. Heat Transfer. September 2020, 142(9): 092302.
doi: https://doi.org/10.1115/1.4047146
Topics:
Heat flux
,
Heat transfer coefficients
,
Jets
,
Temperature
,
Heat conduction
,
Transients (Dynamics)
,
Turbulence
Micro/Nanoscale Heat Transfer
Enhanced Spray Cooling Using Micropillar Arrays: A Systematic Study
J. Heat Transfer. September 2020, 142(9): 092501.
doi: https://doi.org/10.1115/1.4047266
Topics:
Columns (Structural)
,
Cooling
,
Critical heat flux
,
Flow (Dynamics)
,
Sprays
,
Drops
,
Air flow
,
Heat transfer
,
Temperature
,
Water
Heat Transfer and Entropy Generation Analysis of Slit Pillar Array in Microchannels
J. Heat Transfer. September 2020, 142(9): 092502.
doi: https://doi.org/10.1115/1.4047267
Topics:
Columns (Structural)
,
Entropy
,
Fluids
,
Heat transfer
,
Microchannels
,
Temperature
,
Reynolds number
,
Flow (Dynamics)
,
Pressure drop
,
Heat sinks
Thermodynamic Analysis of Microchannel Heat Sink With Cylindrical Ribs and Cavities
J. Heat Transfer. September 2020, 142(9): 092503.
doi: https://doi.org/10.1115/1.4047505
Topics:
Cavities
,
Design
,
Entropy
,
Heat sinks
,
Heat transfer
,
Microchannels
,
Reynolds number
,
Thermal resistance
,
Flow (Dynamics)
,
Friction
Natural and Mixed Convection
Numerical Analysis on the Effect of Wavy Partitions on Natural Convection in Porous Enclosure
J. Heat Transfer. September 2020, 142(9): 092601.
doi: https://doi.org/10.1115/1.4047502
Topics:
Convection
,
Natural convection
,
Shapes
,
Waves
,
Numerical analysis
,
Rayleigh number
,
Heat transfer
,
Porous materials
,
Flow (Dynamics)
Onset of Natural Convection in a Porous Layer Confined by an Elliptic or Semi-Elliptic Box Using the Ritz Method
J. Heat Transfer. September 2020, 142(9): 092602.
doi: https://doi.org/10.1115/1.4047264
Topics:
Boundary-value problems
,
Eigenfunctions
,
Eigenvalues
,
Rayleigh number
,
Stability
,
Natural convection
The Validity of Approximate Boundary Conditions for Natural Convection With Thermal Radiation in Open Cavities
J. Heat Transfer. September 2020, 142(9): 092603.
doi: https://doi.org/10.1115/1.4047640
Topics:
Boundary-value problems
,
Cavities
,
Natural convection
Porous Media
On the Onset of Gravity Modulated Filtration Convection in Grade Fluids Via Mathieu Functions
J. Heat Transfer. September 2020, 142(9): 092701.
doi: https://doi.org/10.1115/1.4047265
Topics:
Convection
,
Filtration
,
Fluids
,
Gravity (Force)
,
Porous materials
,
Rayleigh number
,
Flow (Dynamics)
A Correlation for Nusselt Number of Slip Gas Flow in Confined Porous Media
J. Heat Transfer. September 2020, 142(9): 092702.
doi: https://doi.org/10.1115/1.4047514
Topics:
Flow (Dynamics)
,
Gas flow
,
Heat transfer
,
Lattice Boltzmann methods
,
Porosity
,
Porous materials
,
Temperature
,
Simulation
,
Relaxation (Physics)
,
Slip flow
Radiative Heat Transfer
Artificial Neural Networks in Radiation Heat Transfer Analysis
J. Heat Transfer. September 2020, 142(9): 092801.
doi: https://doi.org/10.1115/1.4047052
Topics:
Artificial neural networks
,
Radiation (Physics)
,
Emissivity
,
Heat transfer
Technical Briefs
Simulation of Nonlinear Heat Conduction in Perforated Material by Improved Moving Particle Semi-Implicit Method
J. Heat Transfer. September 2020, 142(9): 094501.
doi: https://doi.org/10.1115/1.4047367
Topics:
Heat conduction
,
Particulate matter
,
Temperature
,
Simulation
Three-Dimensional Designing of Octet-Truss Structures With Controlled Thermal Anisotropy
J. Heat Transfer. September 2020, 142(9): 094502.
doi: https://doi.org/10.1115/1.4047517
Topics:
Anisotropy
,
Design
,
Metals
,
Tensors
,
Thermal conductivity
,
Trusses (Building)
Discussion
Discussion “Investigation of Double Diffusive Natural Convection in Presence of Gray Gas Radiation Within a Square Cavity Using Multiple Relaxation Time Lattice Boltzmann Method,” [Moufekkir, F., Moussaoui, M. A., Mezrhab, A., Fontaine, J. P., Bouzidi, M., ASME J. Heat Transfer, 2013, 135(10), p. 102701]
J. Heat Transfer. September 2020, 142(9): 095501.
doi: https://doi.org/10.1115/1.4047051