Skip to Main Content
Skip Nav Destination

Issues

Technical Papers

Max Jacob Award
J. Heat Transfer. December 2003, 125(6): 957–979. doi: https://doi.org/10.1115/1.1621889
Conduction
J. Heat Transfer. December 2003, 125(6): 980–987. doi: https://doi.org/10.1115/1.1621892
Forced Convection
J. Heat Transfer. December 2003, 125(6): 988–998. doi: https://doi.org/10.1115/1.1571084
J. Heat Transfer. December 2003, 125(6): 999–1006. doi: https://doi.org/10.1115/1.1621897
J. Heat Transfer. December 2003, 125(6): 1007–1016. doi: https://doi.org/10.1115/1.1621900
Natural and Mixed Convection
J. Heat Transfer. December 2003, 125(6): 1017–1026. doi: https://doi.org/10.1115/1.1597611
J. Heat Transfer. December 2003, 125(6): 1027–1037. doi: https://doi.org/10.1115/1.1603772
Jets and Wakes
J. Heat Transfer. December 2003, 125(6): 1038–1045. doi: https://doi.org/10.1115/1.1621899
J. Heat Transfer. December 2003, 125(6): 1046–1057. doi: https://doi.org/10.1115/1.1622720
Radiative Heat Transfer
J. Heat Transfer. December 2003, 125(6): 1058–1064. doi: https://doi.org/10.1115/1.1621894
J. Heat Transfer. December 2003, 125(6): 1065–1073. doi: https://doi.org/10.1115/1.1621902
Evaporation, Boiling, and Condensation
J. Heat Transfer. December 2003, 125(6): 1074–1086. doi: https://doi.org/10.1115/1.1603773
J. Heat Transfer. December 2003, 125(6): 1087–1095. doi: https://doi.org/10.1115/1.1603776
J. Heat Transfer. December 2003, 125(6): 1096–1105. doi: https://doi.org/10.1115/1.1621890
J. Heat Transfer. December 2003, 125(6): 1106–1115. doi: https://doi.org/10.1115/1.1622717
J. Heat Transfer. December 2003, 125(6): 1116–1122. doi: https://doi.org/10.1115/1.1622716
Melting and Solidification
J. Heat Transfer. December 2003, 125(6): 1123–1128. doi: https://doi.org/10.1115/1.1622719
Multiphase Flow and Heat Transfer
J. Heat Transfer. December 2003, 125(6): 1129–1139. doi: https://doi.org/10.1115/1.1621891
Combustion and Gas Turbine Heat Transfer
J. Heat Transfer. December 2003, 125(6): 1140–1146. doi: https://doi.org/10.1115/1.1621901
Microscale Heat Transfer
J. Heat Transfer. December 2003, 125(6): 1147–1155. doi: https://doi.org/10.1115/1.1621898
J. Heat Transfer. December 2003, 125(6): 1156–1162. doi: https://doi.org/10.1115/1.1622718
Heat and Mass Transfer
J. Heat Transfer. December 2003, 125(6): 1163–1169. doi: https://doi.org/10.1115/1.1603780
Thermal Systems
J. Heat Transfer. December 2003, 125(6): 1170–1177. doi: https://doi.org/10.1115/1.1621893

Technical Notes

J. Heat Transfer. December 2003, 125(6): 1178–1183. doi: https://doi.org/10.1115/1.1597614
J. Heat Transfer. December 2003, 125(6): 1183–1186. doi: https://doi.org/10.1115/1.1597615
J. Heat Transfer. December 2003, 125(6): 1187–1190. doi: https://doi.org/10.1115/1.1603777
J. Heat Transfer. December 2003, 125(6): 1190–1193. doi: https://doi.org/10.1115/1.1603778
J. Heat Transfer. December 2003, 125(6): 1194–1197. doi: https://doi.org/10.1115/1.1603779
J. Heat Transfer. December 2003, 125(6): 1197–1205. doi: https://doi.org/10.1115/1.1597613

Discussion and Closure

J. Heat Transfer. December 2003, 125(6): 1206–1207. doi: https://doi.org/10.1115/1.1621895
J. Heat Transfer. December 2003, 125(6): 1208. doi: https://doi.org/10.1115/1.1621896

Erratum

J. Heat Transfer. December 2003, 125(6): 1209. doi: https://doi.org/10.1115/1.1629104
Close Modal

or Create an Account

Close Modal
Close Modal