Abstract

This paper utilizes a Bayesian inference framework to address the two-dimensional (2D) steady-state heat conduction problem, focusing on the estimation of unknown distributed heat sources in a thermally conducting medium with uniform conductivity. The goal is to infer the locations, strength, and shape of heaters by assimilating temperature data in Euclidean space, employing a Fourier series to represent each heater's shape. The Markov Chain Monte Carlo (MCMC) method, incorporating the random-walk Metropolis–Hasting (MH) algorithm and parallel tempering, is utilized for posterior distribution exploration in both unbounded and wall-bounded domains. It is found that multiple solutions arise in cases where the number of temperature sensors is less than the number of unknown states. Moreover, smaller heaters introduce greater uncertainty in estimated strength. To address the challenge of estimating the heater's strength and shape simultaneously due to their strong correlation, our method incorporates sharp priors on one to ensure accurate and feasible solutions of the other. The diffusive nature of heat conduction smooths out any deformations in the temperature contours, especially in the presence of multiple heaters positioned near each other, impacting convergence. In wall-bounded domains with Neumann boundary conditions, the inference of heater parameters tends to be more accurate than in unbounded domains.

References

1.
Hadamard
,
J.
,
1923
,
Lectures on Cauchy's Problem in Linear Partial Differential Equations
, Vol.
15
,
Yale University Press
, New Haven, CT.
2.
Ritchie
,
R. J.
, and
Prvan
,
T.
,
1996
, “
Current Statistical Methods for Estimating the km and Vmax of Michaelis-Menten Kinetics
,”
Biochem. Educ.
,
24
(
4
), pp.
196
206
.10.1016/S0307-4412(96)00089-1
3.
Bezruchko
,
B. P.
, and
Smirnov
,
D. A.
,
2010
,
Extracting Knowledge From Time Series: An Introduction to Nonlinear Empirical Modeling
,
Springer Science & Business Media
, Berlin, Germany.
4.
Peifer
,
M.
, and
Timmer
,
J.
,
2007
, “
Parameter Estimation in Ordinary Differential Equations for Biochemical Processes Using the Method of Multiple Shooting
,”
IET Syst. Biol.
,
1
(
2
), pp.
78
88
.10.1049/iet-syb:20060067
5.
Choi
,
W.
, and
Ooka
,
R.
,
2015
, “
Interpretation of Disturbed Data in Thermal Response Tests Using the Infinite Line Source Model and Numerical Parameter Estimation Method
,”
Appl. Energy
,
148
, pp.
476
488
.10.1016/j.apenergy.2015.03.097
6.
Khan
,
A. I.
,
Lu
,
Q.
,
Du
,
D.
,
Lin
,
Y.
, and
Dutta
,
P.
,
2018
, “
Quantification of Kinetic Rate Constants for Transcytosis of Polymeric Nanoparticle Through Blood-Brain Barrier
,”
Biochim. Biophys. Acta-Gen. Subj.
,
1862
(
12
), pp.
2779
2787
.10.1016/j.bbagen.2018.08.020
7.
Calvetti
,
D.
, and
Somersalo
,
E.
,
2018
, “
Inverse Problems: From Regularization to Bayesian Inference
,”
Wiley Interdiscip. Rev.: Comput. Stat.
,
10
(
3
), p.
e1427
.10.1002/wics.1427
8.
Lei
,
L.
,
Zheng
,
H.
,
Xue
,
Y.
, and
Liu
,
W.
,
2022
, “
Inverse Modeling of Thermal Boundary Conditions in Commercial Aircrafts Based on Green's Function and Regularization Method
,”
Build. Environ.
,
217
, p.
109062
.10.1016/j.buildenv.2022.109062
9.
Castro
,
L.
,
Chen
,
Q.
, and
Saitoh
,
S.
,
2010
, “
Source Inversion of Heat Conduction From a Finite Number of Observation Data
,”
Appl. Anal.
,
89
(
6
), pp.
801
813
.10.1080/00036810903569523
10.
Su
,
J.
, and
Silva Neto
,
A. J.
,
2001
, “
Heat Source Estimation With the Conjugate Gradient Method in Inverse Linear Diffusive Problems
,”
J. Braz. Soc. Mech. Sci.
,
23
(
3
), pp.
321
334
.10.1590/S0100-73862001000300005
11.
Ma
,
Y.-J.
,
Fu
,
C.-L.
, and
Zhang
,
Y.-X.
,
2012
, “
Identification of an Unknown Source Depending on Both Time and Space Variables by a Variational Method
,”
Appl. Math. Modell.
,
36
(
10
), pp.
5080
5090
.10.1016/j.apm.2011.12.046
12.
Chen
,
T.-C.
,
Cheng
,
C.-H.
,
Jang
,
H.-Y.
, and
Tuan
,
P.-C.
,
2007
, “
Using Input Estimation to Estimate Heat Source in Nonlinear Heat Conduction Problem
,”
J. Thermophys. Heat Transfer
,
21
(
1
), pp.
166
172
.10.2514/1.22371
13.
Lang
,
J.
,
Wang
,
Q.
, and
Tong
,
S.
,
2024
, “
Investigation of Heat Source Layout Optimization by Using Deep Learning Surrogate Models
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
6
), pp.
1
24
.10.1115/1.4064733
14.
Radfar
,
N.
,
Amiri
,
H.
, and
Arabsolghar
,
A.
,
2019
, “
Application of Metaheuristic Algorithms for Solving Inverse Radiative Boundary Design Problems With Discrete Power Levels
,”
Int. J. Therm. Sci.
,
137
, pp.
539
551
.10.1016/j.ijthermalsci.2018.12.014
15.
Erchiqui
,
F.
,
2018
, “
Application of Genetic and Simulated Annealing Algorithms for Optimization of Infrared Heating Stage in Thermoforming Process
,”
Appl. Therm. Eng.
,
128
, pp.
1263
1272
.10.1016/j.applthermaleng.2017.09.102
16.
Stuart
,
A. M.
,
2010
, “
Inverse Problems: A Bayesian Perspective
,”
Acta Numer.
,
19
, pp.
451
559
.10.1017/S0962492910000061
17.
Bishop
,
C. M.
, and
Nasrabadi
,
N. M.
,
2006
,
Pattern Recognition and Machine Learning
, Vol.
4
,
Springer
, New York.
18.
Berger
,
J. O.
,
2013
,
Statistical Decision Theory and Bayesian Analysis
,
Springer Science & Business Media
, New York.
19.
Durbin
,
R.
,
Eddy
,
S. R.
,
Krogh
,
A.
, and
Mitchison
,
G.
,
1998
,
Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids
,
Cambridge University Press
, Cambridge, UK.
20.
Wang
,
J.
, and
Zabaras
,
N.
,
2004
, “
A Bayesian Inference Approach to the Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3927
3941
.10.1016/j.ijheatmasstransfer.2004.02.028
21.
Wang
,
J.
, and
Zabaras
,
N.
,
2004
, “
Hierarchical Bayesian Models for Inverse Problems in Heat Conduction
,”
Inverse Probl.
,
21
(
1
), pp.
183
206
.10.1088/0266-5611/21/1/012
22.
Khatoon
,
S.
,
Phirani
,
J.
, and
Bahga
,
S. S.
,
2023
, “
Fast Bayesian Inference for Inverse Heat Conduction Problem Using Polynomial Chaos and Karhunen–Loeve Expansions
,”
Appl. Therm. Eng.
,
219
, p.
119616
.10.1016/j.applthermaleng.2022.119616
23.
Jin
,
B.
, and
Zou
,
J.
,
2008
, “
A Bayesian Inference Approach to the Ill-Posed Cauchy Problem of Steady-State Heat Conduction
,”
Int. J. Numer. Methods Eng.
,
76
(
4
), pp.
521
544
.10.1002/nme.2350
24.
Cao
,
N.
,
Luo
,
X.
, and
Tang
,
H.
,
2022
, “
A Bayesian Model to Solve a Two-Dimensional Inverse Heat Transfer Problem of Gas Turbine Discs
,”
Appl. Therm. Eng.
,
214
, p.
118762
.10.1016/j.applthermaleng.2022.118762
25.
Hedfi
,
H.
,
Erchiqui
,
F.
,
Kocaefe
,
Y.
, and
Naji
,
H.
,
2023
, “
Energy Efficiency Analysis of the Radiative Transfer of a Real Medium in Thermoforming
,”
Int. Commun. Heat Mass Transfer
,
142
, p.
106664
.10.1016/j.icheatmasstransfer.2023.106664
26.
Liska
,
S.
, and
Colonius
,
T.
,
2014
, “
A Parallel Fast Multipole Method for Elliptic Difference Equations
,”
J. Comput. Phys.
,
278
, pp.
76
91
.10.1016/j.jcp.2014.07.048
27.
Eldredge
,
J. D.
,
2022
, “
A Method of Immersed Layers on Cartesian Grids, With Application to Incompressible Flows
,”
J. Comput. Phys.
,
448
, p.
110716
.10.1016/j.jcp.2021.110716
28.
Taira
,
K.
, and
Colonius
,
T.
,
2007
, “
The Immersed Boundary Method: A Projection Approach
,”
J. Comput. Phys.
,
225
(
2
), pp.
2118
2137
.10.1016/j.jcp.2007.03.005
29.
Metropolis
,
N.
, and
Ulam
,
S.
,
1949
, “
The Monte Carlo Method
,”
J. Am. Stat. Assoc.
,
44
(
247
), pp.
335
341
.10.1080/01621459.1949.10483310
30.
Geman
,
S.
, and
Geman
,
D.
,
1984
, “
Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images
,”
IEEE Trans. Pattern Anal. Mach. Intell.
, PAMI-6(
6
), pp.
721
741
.10.1109/TPAMI.1984.4767596
31.
Hastings
,
W. K.
,
1970
, “
Monte Carlo Sampling Methods Using Markov Chains and Their Applications
,”
Biometrika
, 57(1), pp.
97
109
.10.2307/2334940
32.
Sambridge
,
M.
,
2014
, “
A Parallel Tempering Algorithm for Probabilistic Sampling and Multimodal Optimization
,”
Geophys. J. Int.
,
196
(
1
), pp.
357
374
.10.1093/gji/ggt342
33.
Silva
,
R. L.
,
Verhoosel
,
C.
, and
Quaeghebeur
,
E.
,
2024
, “
Bayesian Estimation and Uncertainty Quantification of a Temperature-Dependent Thermal Conductivity
,” arXiv:2403.12696.
34.
Eldredge
,
J. D.
,
2019
,
Mathematical Modeling of Unsteady Inviscid Flows
, Vol.
50
,
Springer
, Switzerland.
35.
Eldredge
,
J. D.
, and
Provost
,
M. L.
,
2023
, “
Bayesian Inference of Vorticity in Unbounded Flow From Limited Pressure Measurements
,” arXiv:2308.07399.
You do not currently have access to this content.